首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The [OsH(CO)(NCMe)2(PPh3)2]BF4 complex (1) is an efficient and regioselective precatalyst for the hydrogenation of the nitrogen-containing ring of quinoline (Q), isoquinoline (iQ), 5,6- and 7,8-benzoquinoline (BQ), and acridine (A) under mild reaction conditions (125 °C and 4 atm H2). Kinetic studies of the hydrogenation of Q and iQ to give tetrahydroquinoline (THQ) and tetrahydroisoquinoline (THiQ), respectively, lead to the rate law r = K 1 k 2/(1 + K 1[H2])[Os][H2]2, which becomes r = K 1 k 2[Os][H2]2, at low hydrogen concentrations (below 1 atm H2); the catalytically active species is of the type [OsH(CO)(L)( 1-N)(PPh3)2]BF4 [(2a): L = NCMe, N = Q; (2b): L = N = iQ]. The generic mechanisms involve a rapid and partial hydrogenation of the coordinated substrate (N) of complex (2) to yield the corresponding dihydroderivative (DHN) species [OsH(CO)(L)( 1-DHN)(PPh3)2]BF4 [(3a): L = NCMe, DHN = DHQ; (3b): L = iQ or THiQ, DHN = DHiQ], followed by the rate-determining second hydrogenation of the DHN ligand, which yield [OsH(CO)(L)( 1-THN)(PPh3)2]BF4 [(4a): L = NCMe, THN = THQ; (4b): L = iQ or THiQ, THN = THiQ]; substitution of the THN ligand by a new molecule of the respective substrate regenerates the active species and restarts the catalytic cycle. For the hydrogenation of acridine to give 9,10-dihidroacridine (acridane), the rate law was r = k 1[Os][H2]; the mechanism involves the hydrogenation of the active species [OsH(CO)(NCMe)( 1-A)(PPh3)2]BF4 (2c) to yield acridane and the unsaturated species [OsH(CO)(NCMe)(PPh3)2]BF4 as the rate-determining step.  相似文献   

2.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

3.
Summary A kinetic study of the regioselective homogeneous hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) was carried out using the cationic complex [RuH(CO)(NCMe)2(PPh3)2]BF4 (1) as the precatalyst. The experimentally determined rate law wasr = {k 2 K 1/(1+K 1[H2])}[Ru0][H2]2, which becomesr = {k 2 K 1[Ru0]–[H2]2 at low hydrogen concentrations (k 2 K 1 = 28.5M –2 s–1 at 398 K). The corresponding activation parameters were found to be H = 42 + 6 kJ mol–1, S = – 115 ± 2JK–1mol–1 and G = 92 ± 8 kJ mol–1. Complex(1) was found to react with Q in CHCl3 under reflux to yield [RuH(CO)(NCMe)(N-Q)(PPh3)2]BF4 (2) which was also isolated from the hydrogenation runs. These experimental findings, together with the results ofab initio self-consistent-field molecular orbital calculations on the free organic molecules involved, are consistent with a mechanism involving a rapid and reversible partial hydrogenation of(2) to yield the corresponding dihydroquinoline (DHQ) species [RuH(CO)(NCMe)(DHQ)(PPh3)2]BF4 (4), followed by a rate-determining second hydrogenation of DHQ to yield [RuH(CO)(NCMe)(THQ)(PPh3)2]BF4 (3).  相似文献   

4.
Treatment of [MI2(CO)3(NCMe)2] with two equivalents of 4,4-bipyridine (4,4-bipy) in CH2Cl2 at room temperature gave the MeCN displaced products, [MI2(CO)3(4,4-bipy-N)2] (1) and (2). Equimolar amounts of [MI2(CO)3(NCMe)2] and L (L = PPh3, AsPh3 or SbPh3) react to give [MI2(CO)3(NCMe)L], which when reacted in situ with 4,4-bipy yield the new complexes, [MI2(CO)3(4,4-bipy-N)L] (3)(8). Reaction of equimolar quantities of [WI2(CO)(NCMe)( 2-RC2R)2] (R = Me or Ph) and 4,4-bipy gave the new bis(alkyne) complexes, [WI2(CO)(4,4-bipy-N)( 2-RC2R)2] (9) and (10). Treatment of [MI2(CO)3(NCMe)2] with two equivalents of (9) or (10) in CH2Cl2 at room temperature affords the bimetallic complexes, [MI2(CO)3{WI2(CO)(4,4-bipy-N,N)( 2-RC2R)2}2] (11)(14). Equimolar quantities of [MI2(CO)3(NCMe)(PPh3)] (prepared in situ) and (9) or (10), react to give the 4,4-bipy-bridged complexes, [MI2(CO)3{WI2(CO)(4,4-bipy-N,N)( 2-RC2R)2}(PPh3)] (15)(18). All the new complexes, (1)(18) were characterised by elemental analysis (C, H and N), i.r. and 1H-n.m.r. spectroscopy.  相似文献   

5.
DFT(B3LYP) studies on first protonation step of a series of Cu(II) complexes of some tripodal tetraamines with general formula N[(CH2)nNH2][(CH2)mNH2][(CH2)pNH2] (n = m = p = 2, tren; n = 3, m = p = 2, pee; n = m = 3, p = 2, ppe; n = m = 3, tpt; n = 2, m = 3, p = 4, epb; and n = m = 3, p = 4; ppb) are reported. First, the gas‐phase proton macroaffinity of all latter complexes was calculated with considering following simple reaction: [Cu(L)]2+(g) + H+(g) → [Cu(HL)]3+(g). The results showed that there is a good correlation between the calculated proton macroaffinities of all complexes with their stability constants in solution. Then, we tried to determine the possible reliable structures for microspecies involved in protonation process of above complexes. The results showed that, similar to the solid state, the [Cu(L)(H2O)]2+ and [Cu(HL)(H2O)2]3+ are most stable species for latter complexes and their protonated form, respectively, at gas phase. We found that there are acceptable correlations between the formation constants of above complexes with both the ? and ? of following reaction: [Cu(L)(H2O)]2+(g) + H+(g) + H2O(g) → [Cu(HL)(H2O)2]3+(g). The ? of the latter reaction can be defined as a theoretically solvent–proton macroaffinity of reactant complexes because they have gained one proton and one molecule of the solvent. The unknown formation constant of [Cu(epb)]2+ complex was also predicted from the observed correlations. In addition, the first proton affinity of all complexes was studied in solution using DPCM and CPCM methods. It was shown that there is an acceptable correlation between the solvent–proton affinities of [Cu(L)(H2O)]2+ complexes with formation constants of [Cu(HL)(H2O)2]3+ complexes in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
Choosy chemicals : Rhenium(I) complexes of type [ReBr2(L)(NO)(PR3)2] (L=H2 ( 1 ), CH3CN ( 2 ), ethylene ( 3 ); R=iPr ( a ), cyclohexyl ( b )) proved to be suitable catalyst precursors for the highly selective dehydrogenative silylation of alkenes. Two types of rhenium(I) hydride species, [ReBrH(NO)(PR3)2] ( 4 ) and [ReBr(η2‐CH2?CHR1)H(NO)(PR3)2] ( 5 ), were found in the [ReBr2(L)(NO)(PR3)2]‐catalyzed dehydrogenative silylation of alkenes.

  相似文献   


7.
Two 2-terephthalate (tp) bridged complexes, [Cu2(tp)(pren)4](ClO4)2 (pren = 1,3-diaminopropane) (1) and [Ni2(tp)(pren)4(Him)2](ClO4)2 (Him = imidazole) (2), have been synthesized and characterized by X-ray single-crystal structural analysis. In the discrete dinuclear [Cu2(tp)(pren)4]2+ cation of complex (1), each CuII atom has a square-pyramidal geometry, being coordinated by four nitrogen atoms (avg. 2.031 Å) from two pren ligands at the basal plane and one oxygen atom [2.259(3) Å] from a bis-monodentate tp group at the axial position. In the discrete dinuclear [Ni2(tp)(pren)4(Him)2]2+ cation of complex (2), each NiII center is coordinated by five nitrogen atoms [Ni—N 2.069(3)–2.109(2) Å] from one Him group and two pren groups, and completed by one oxygen atom [Ni—O 2.138(3) Å] from a bis-monodentate tp group to furnish a distorted octahedron. Magnetic susceptibility studies show that the pair of metal atoms, although being separated by >11.5 Å, exhibit weak intramolecular antiferromagnetic interactions in complexes (1) (g = 2.07 and J = –3.4 cm–1) and (2) (g = 2.10 and J = –0.7 cm–1). The electrochemical behaviors of the complexes have also been studied by cyclic voltammogram processes.  相似文献   

8.
Summary Addition reactions of [MNCl4] (M = Os or Ru) with ligands L or L to give [MNCl4 · L] or [(MNCl4)2L]2– (L = pyridine, pyridine-N-oxide,iso-quinoline or DMSO; L = hexamethylenetetramine, pyrazine or dioxan) are described. With NCO, [OsNCl5] gives [OsN(NCO)5]2– but NCS gives a thionitrosyl complex, [Os(NS)(NCS)5]2–. Reactions of OsNCl3(AsPh3)2 with pyridine, 1,10-phenanthroline and tertiary phosphites and phosphinites have been studied, as have reactions of triphenylphosphine with OsOCl4 andtrans- [MO2Cl4]2– (M = Os or Ru). The nitrido-iodo complexes [OsNI4] and OsNI3, (SbPh3)2 are also reported.  相似文献   

9.
Summary Three new CuII trinuclear complexes, namely [Cu3(BZT)(phen)3(ClO4)3]·6H2O (1), [Cu3(BZT)(Nphen)3 (ClO4)3]·6H2O (2) and [Cu3(BZT)(bipy)3 (ClO4)3]·3H2O (3) (BZT) = 1,3,5-benzenetricarboxylato, phen = 1,10-phenanthroline, Nphen = 5-nitro-1,10-phenanthroline, bipy = 2,2-bipyridyl, have been synthesized, with 1,3,5-benzenetricarboxylato as the bridged ligand, and characterized by elemental analysis, and i.r. and electronic reflection spectra. We propose that the complexes have an extended 1,3,5-benzenetricarboxylatobridged structure containing three CuII atoms. The variable-temperature magnetic susceptibilities of the complexes were measured in the 77–300 K range. The magnetic coupling parameters are consistent with an antiferromagnetic exchange model based on the Hamiltonian operator [=–2J( 1 2+ 1 3+ 2 3, where S 1=S 2=S 3=1/2, giving the antiferromagnetic coupling parameters of 2J = – 18.6 cm-1 for (1)–(3).  相似文献   

10.
Crystalline [Y(OH2)3(NCMe)(benzo-15-crown-5)][ClO4]3·benzo-15-crown-5-CH3CN can be obtained by slowly cooling a reaction mixture of Y(ClO4)3·n H2O with benzo-15-crown-5 in a solution of acetonitrile and methanol (3 : 1) from 60°C to room temperature. The crystal structure of this complex has been determined at –150 and 20°C. The complex is triclinic,P . At –150°C the cell parameters area = 11.986(4),b = 12.071(7),c = 16.364(5) Å, = 93.56(3), = 98.68(3), = 109.68(4)°, vol = 2187 Å3, andD calc = 1.61 g cm–3 forZ = 2 formula units. 3633 independently observed [F o 5(F o)] reflections were used in the final least-squares refinement leading to an agreement index ofR = 0.048. The Y(III) ion coordination geometry approximates a tricapped trigonal prism with three water molecules and three benzo-15-crown-5 oxygen atoms forming the prism, with the two remaining benzo-15-crown-5 oxygen atoms and the acetonitrile molecule completing the coordination as capping atoms. The three water molecules hydrogen bond a second crown ether molecule and two of the perchlorate anions. The two acetonitrile molecules have contacts with perchlorate oxygen atoms close enough for some weak interaction. One perchlorate is ordered, one is partially disordered as is the coordinated solvent molecule, and the third anion is totally disordered. The two unique crown ether molecules have distinctively different conformations.For Part 20, see reference [1].  相似文献   

11.
Crystalline [Dy(NCS)3(dibenzo-30-crown-10)(H2O)2]·H2O·MeCN can be obtained by slowly evaporating a reaction mixture of Dy(NCS)3·nH2O with dibenzo-30-crown-10 in a solution of acetonitrile. The material crystallizes in the monoclinic space groupP21/n, the cell parameters area=11.450(5),b=23.284(4),c=18.424(6)Å, =106.28(4)°,V=4715Å3,M=968.47,D x=1.36 g cm–1, =17.80 cm–1,F(000)=1972,Z=4.2740 independently observed [I3I] reflections were used in the final least-squares refinement leading to an agreement index ofR=0.085. The Dy(III) ion coordination geometry approximates a square antiprism, involving two water oxygens and three dibenzo-30-crown-10 oxygen atoms and three isthiocyanate nitrogens. Hydrogen bonds are formed between the two water molecules and four uncoordinated crown ether oxygen atoms. Supplementary Data relevant to this paper have been deposited with the British Library as Supplementary Publication No. SUP 82148 (22 pp.)  相似文献   

12.
Summary Reaction of MoCl5 or WCl6 with 1-methyl-1-phenylhydrazine or 1, 1-diphenylhydrazine hydrochloride results in the formation of MVI species [MCl4(NNRR)]. These react with tertiary phosphines PR3 to form MV species [MCl3(NNRR)(PR3) n ] (n=1 or 2).[MoCl3(NNMePh)(PMe3)2] can be reduced in the presence of PMe3 to the MoIV speciescis-mer-[MoCl2(NNMePh)(PMe3)3].  相似文献   

13.
Two Cu(II) complexes of (S)-2-[(N-benzylprolyl)amino]benzaldehyde oxime (L) were isolated. The complex Cu[(LH–1)(Cl)] is green, whereas Cu2(LH2)–2 is red-brown. The structure of these complexes was proved by elemental analysis, IR and UV spectroscopy. The average molecular masses ( ) of the complexes in ethanol were determined by precision ebulliometry. The concentration dependence of the values of these complexes is consistent with the existence of the following equilibria in ethanol: Cu[(LH–1)(Cl)] + EtOH Cu[(LH–1)(HOEt)]++Cl+ and [Cu2(LH–2)2] + EtOH 2[Cu(LH-–2)(HOEt)]. The equilibrium constants of these two reactions were determined. Both [Cu(LH–1)(Cl)] and [Cu2(LH–2)2] catalyze with equal efficiency the hydrolysis of 2-methyl-4-benzyl-5(4H)-oxazolone in aqueous solutions at a given pH. The UV spectra of both complexes in water at similar pH values are identical. Thus, both complexes must be interconvertible in aqueous solutions. Furthermore, the absence of any electrophoretically mobile particles in neutral aqueous buffers is an indication that the complexes [Cu2(LH–2)2] and [Cu(LH–2)(H2O)] are the predominant species in solution under these conditions.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2270–2275, October, 1991.  相似文献   

14.
Spectral and kinetic parameters were studied for phosphine-bipyridyl ruthenium(II) complexes, namely, cis-[Ru(Bipy)2(PPh3)X](BF4), cis-[Ru(Bipy)(Dppe)X2], and cis-[Ru(Bipy)(Dppene)X2] (where Bipy is 2,2"-bipyridyl, PPh3is triphenylphosphine, Dppe is 1,2-bis(diphenylphosphino)ethane, and Dppene iscis-1,2-bis(diphenylphosphino)ethylene; X = CN, NO2 ), in the frozen (77 K) alcohol glasses (EtOH–MeOH, 4 : 1). The energies of the singlet and triplet metal-to-ligand charge transfer states d(Ru) *(Bipy) were found to increase in the order [Ru(Bipy)2X2] < [Ru(Bipy)2(PPh3)X]+< [Ru(Bipy)(Dppe)X2] < [Ru(Bipy)(Dppene)X2]. The luminescence quantum yields and the rate constants of the nonradiative deactivation of the lowest excited state 3MLCT increase in the same order.  相似文献   

15.
Dark blue plate‐like crystals of [Cu2(phen)2 · (H2O)2(OH)2](HCO3)2 · 6 H2O were obtained from a CH3OH–H2O solution containing CuCl2, 1,10‐phenanthroline (phen), sebacic acid and Na2CO3. The crystal structure (triclinic, P 1 (no. 2), a = 8.118(1), b = 9.624(1), c = 10.536(1) Å, α = 81.35(1)°, β = 88.51(1)°, γ = 75.77(1)°, Z = 1, R = 0.0332, wR2 = 0.0981 for 4163 observed reflections (F ≥ 2σ(F ) out of 4595 unique reflections) consists of divalent [Cu2(phen)2(H2O)2(OH)2]2+ complex cations, anionic (HCO3)22– dimers and H2O molecules. The divalent complex cations (d(Cu…Cu) = 2.905(1) Å) are centered at inversion centers. The Cu atoms are fivefold square‐pyramidally coordinated by two nitrogen and three oxygen atoms from one bidentate chelating phen ligand, two bridging hydroxide groups and one axial water molecule (d(Cu–N)phen = 2.021(2), 2.024(2) Å; d(Cu–O)OH = 1.941(1), 1.949(1) Å; d(Cu–O)H2O = 2.254(2) Å). The divalent complex cations are stacked to form 2 D layers parallel (001) with 1 D π‐π stacking interactions along [100] via the terminal phen rings. The dimeric (HCO3)22– anions and the hydrogen bonded H2O molecules are sandwiched between the 2 D layers.  相似文献   

16.
Four copper(II) complexes of betaines, [Cu2(BET)4Cl2][Cu(BET)2Cl2]Cl2 (2), [Cu2(pyBET)4Cl2]3[CuCl4]2Cl2 (3), [Cu, (pyBET)4 (H2O)2] (NO3)4 · 2H2O (4), and [Cu2(ppBET)4(H2O)2](ClO4)4 · 4H2O (5), (BET = Me3N+CH2COO; pyBET = C5H5N+CH2COO; ppBET=C5H5N+CH2CH2COO), have been prepared and characterized by X-ray crystallography. These complexes all contain dimeric [Cu2 (carboxylato-O,O)4L2] structures [basal Cu-O=1.955(4) 1.991(2), Cu Cu=2.602(1) 2.759(1) Å] with the apical ligand L=Cl in (2) and (3) [Cu-Cl=2.415(1) 2.436(3) Å] and L = H2O in (4) and (5) [Cu-OH2=2.158(4) 2.192(3) Å]; also present are a discrete [Cu(BET)2Cl2] molecule with a compressed tetrahedral CuO2Cl2 chromophore involving two unidentate carboxylate ligands [Cu-O=1.916(2), Cu-Cl=2.254(1) Å] in (2), and a discrete C3v [CuCl4]2– anion in (3). Generally the intradimer Cu Cu distance may be correlated to the electronic repulsion of the metal-ligand bonds in the CuO4L chromophore, as well as the steric interaction between the carboxylate moieties and the apical ligand.  相似文献   

17.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

18.
19.
Self assembly of N-salicylidene 2-aminopyridine (L1H) with Cu(NO3)2·3H2O affords [Cu4(L1)4(NO3)3(CH3OH)][Cu(L1)(NO3)2](2-aminopyridinium)(NO3)·5CH3OH (1) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling (J = −340(2) cm−1) between Cu(II) ions through a double alkoxo bridge. Reacting L1H with Cu(NO3)2·3H2O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu4(L1)4(NO3)2(OH)2](2-aminopyridinium)(OH)·CH3OH) (2). A dinuclear Ni(II) complex, [Ni2(L2)2(L2H)2(NCS)2(CH3OH)2]·2CH3OH (3), obtained with another related donor ligand (L2H N-salicylidene 3-aminomethylpyridine) was also prepared.  相似文献   

20.
A new Wells–Dawson sandwich polyoxometalate, -[(NaOH2)2(CuII)2 (P2W15O56)2]18− (2P), has been obtained in good yield by the dissolution of solid -Na12[P2W15O56]·18H2O in an aqueous solution of Cu(II) and L-glutamic acid at pH 10. The arsenic analogue, -[(NaOH2)2(CuII)2(As2W15O56)2]18− (2As), is likewise prepared by using Na12[As2W15O56]·21H2O instead of Na12[P2W15O56]·18H2O. Diffraction quality crystals of both 2P and 2As were obtained by slow evaporation in air over several days. The X-ray structures of 2P and 2As reveal that two Cu(II) atoms are sandwiched between two -[P2W15O56]12− or two -[As2W15O56]12− ligands, respectively, while the other two positions of the central belt unit are occupied by two Na+ cations. Higher yields of 2As can be obtained by mixing CuCl2·2H2O and [Na12As2W15O56]·21H2O in acetate buffer. The electrochemistry of 2P and 2As is characterized by cyclic voltammograms in which the reduction of the Cu(II) centers is close to the redox pattern of the W-centers. The two Cu(II)-centers are simultaneously reduced to Cu(0); the separate steps could not be resolved for the individual Cu(II) centers. Complexes 2P and 2As constitute the second example, after -[(NaOH2)2(FeIII)2(P2W15O56)2]16− (1P) and -[(NaOH2)2(FeIII)2(As2W15O56)2]16− (1As), of a transition-metal-substituted sandwich polyoxometalate containing two electroactive d-electron metals.Dedicated in honor of Professor Michael T. Pope on the occasion of his retirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号