首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved silver–ammonia staining method for DNA on polyacrylamide gels is described. In this method, staining of DNA using silver–ammonia complex allows high sensitivity, low cost, low toxicity, and simple protocol without requiring fixation and sensitization steps. The protocol takes less than 40 min to complete, with a detection limit of 1.5 pg of single DNA band on polyacrylamide gels, approximately 30‐fold higher than that of original silver–ammonia staining method. Furthermore, this novel technique not only exhibits high sensitivity for large DNA fragment, but also shows a better trend to detect low‐base‐pair DNA compared with other silver staining methods.  相似文献   

2.
The typical concentration of protein loaded varies from 0.13 to 1.40 μg/μL for a classical silver staining method in 2DE gel. Here, we present a simple modified classical silver staining method by modifying the silver impregnation and development reaction steps. This modified method detects the protein spots at extremely low loaded concentrations, ranging from 0.0048 to 0.0480 μg/μL. We recommend this modified silver staining as an excellent method for the limited biological samples used for silver‐stained 2DE analysis. Altogether, the protocol takes close to two days from first dimension separation to second dimension separation, followed by silver staining, scanning, and analysis.  相似文献   

3.
The growing availability of genomic sequence information, together with improvements in analytical methodology, have enabled high throughput, high sensitivity protein identification. Silver staining remains the most sensitive method for visualization of proteins separated by two-dimensional gel electrophoresis (2-D PAGE). Several silver staining protocols have been developed which offer improved compatibility with subsequent mass spectrometric analysis. We describe a modified silver staining method that is available as a commercial kit (Silver Stain PlusOne; Amersham Pharmacia Biotech, Amersham, UK). The 2-D patterns abtained with this modified protocol are comparable to those from other silver staining methods. Omitting the sensitizing reagent allows higher loading without saturation, which facilitates protein identification and quantitation. We show that tryptic digests of proteins visualized by the modified stain afford excellent mass spectra by both matrix-assisted laser desorption/ionization and tandem electrospray ionization. We conclude that the modified silver staining protocol is highly compatible with subsequent mass spectrometric analysis.  相似文献   

4.
Jin LT  Hwang SY  Yoo GS  Choi JK 《Electrophoresis》2004,25(15):2494-2500
A highly sensitive silver staining method for detecting proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was developed. It is based on the silver nitrate staining method but also employs an azo dye, calconcarboxylic acid (NN), as a silver-ion sensitizer. It increases silver binding on protein bands or spots by the formation of a silver-dye complex and also increases the reducing power of silver ions to metallic silver by NN itself with formaldehyde. After a 2 h gel fixing step, the protocol including sensitization, silver-ion impregnation, and reduction steps can be completed in 1 h. The sensitivity is superior to that of silver stain with glutardialdehyde as a silver-ion sensitizer. The detection limit of NN-silver stain is 0.05-0.2 ng protein. Considering the high sensitivity without using glutardialdehyde, the NN-silver stain would be useful for routine silver staining of proteins.  相似文献   

5.
With the development of molecular quantitative genetics, particularly, genetic linkage map construction, quantitative trait loci mapping or genes fine mapping and association analysis etc., more and more PCR products separated in polyacrylamide gels need to be silver‐stained. However, conventional silver‐staining procedures are complicated and time‐consuming as they require a lot of preparation and handling of several solutions prior to use. In this study, a simple and rapid protocol for silver staining of PCR products was developed. The number of steps was reduced compared to conventional protocols, thus achieving detection of PCR products in 7 min, saving time and resources. Fixation and staining solution and developing solution in present staining procedure allowed a reutilization for 12 and 8 times, respectively, reducing the cost greatly. Meanwhile, the sensitivity was significantly improved with the improved method and the minimum of 0.097 ng/μL of DNA amount can be detected in denaturing polyacrylamide gel. The protocol developed in this study will facilitate the development of molecular quantitative genetics.  相似文献   

6.
L Zhao  C Liu  Y Sun  L Ban 《Electrophoresis》2012,33(14):2143-2144
Silver staining is widely used to detect protein in polyacrylamide gels when high sensitivity is required. A simple and rapid protocol for silver staining of proteins following PAGE was developed in the present study. The number of steps was reduced compared to conventional protocol by combining fixing, rinsing, and soaking into a single impregnating step, thus achieving detection of proteins in 20 min. The present method is as sensitive as current protocols with the advantage of saving time and costs.  相似文献   

7.
The Gelcode color-based silver staining system, an improved formulation based on the original publication by Sammons et al. (Electrophoresis 1981, 2, 141-147) has been adapted to automated rapid staining in the PhastSystem Development Unit. The use of elevated temperatures in the fixation, washing, staining, and stabilization steps of the protocol reduces the total time of the process from 18 h to 1 h. The limit of detection, which is at least tenfold more sensitive than the silver staining protocol recommended for the PhastSystem, corresponds to 0.05-0.1 ng of protein per band. The method is applicable to both one- and two-dimensional polyacrylamide gels.  相似文献   

8.
High-performance staining for 1-D and 2-D SDS-PAGE was carried out using a novel protein-binding fluorophore (Dye 1), which noncovalently interacts with proteins and provides a fluorescence emission response to proteins by intramolecular charge transfer. In order to achieve the high-throughput analysis of proteins for SDS-PAGE, the general protocols for in-gel protein staining (SDS-PAGE, fixation, staining, washing, and detection) were simplified to produce an easy and rapid protocol (SDS-PAGE together with staining, washing, and detection). This method was performed by preparation of an electrophoresis buffer containing Dye 1 under optimum conditions, and by the binding of Dye 1 to proteins in the gel during the SDS-PAGE. As a result, this study required only 15 min for protein staining as a minimum time. On the other hand, it takes several hours for the general protein staining method, such as SYPRO Ruby staining (18 h) and CBB staining (105 min). Moreover, the protein-to-protein variation was low, and the detection limit was 7.0 ng/band of BSA (S/N = 3.0) in this method, which was as sensitive as the short-protocol silver staining methods. On the basis of these results, this rapid and easy protocol for SDS-PAGE using Dye 1 may be widely applicable and convenient for users in the various scientific and medical fields.  相似文献   

9.
Zhu Z  Cong W  He H  Wang X  Chen M  Hong G  Jin L 《Analytical sciences》2012,28(4):379-384
A practical, sensitive and environment-benign protocol for the detection of DNA on polyacrylamide gels was described. In this method, the most commonly used formaldehyde-based developer in DNA silver stain, which poses potential hazards to the health of operators, is firstly replaced by vitamin C (Vc) in sodium thiosulfate solution. This allows user-friendly and efficient visualization of DNA that takes about 20 min to complete all the procedures, and provides comparable sensitivity (8 pg of single band) to the most sensitive formaldehyde-based silver staining method developed before.  相似文献   

10.
Qu L  Li X  Wu G  Yang N 《Electrophoresis》2005,26(1):99-101
DNA silver staining is widely used to detect DNA fragment in polyacrylamide gel with high sensitivity. Conventional procedures of the silver staining involve several steps, which take about 40 min to 2 h in total. To improve the efficiency of DNA silver staining, a more efficient protocol is developed in this study. The procedure comprises only four steps including impregnating, rinsing, developing, and stopping, and could be completed within 20 min. Nitric acid and ethanol in the silver-impregnation step of the new procedure eliminates the need for prior treatment of gels with a fixing solution and following rinse prior to impregnation with silver. The procedure has high sensitivity and long storage lifetime. The minimum detectable mass of DNA is 0.44 and 3.5 ng in denaturing and nondenaturing polyacrylamide gel, respectively.  相似文献   

11.
A new fluorescent molecular probe, 2,2′‐(1E,1′E)‐2,2′‐(4‐(dicyanomethylene)‐4H‐pyrane‐2,6‐diyl)bis(ethene‐2,1‐diyl)bis(sodium benzenesulfonate) salt ( 1 ), possessing the cyanopyranyl moieties and two benzene sulfonic acid groups was designed and synthesized to detect proteins in solution and for high‐throughput SDS‐PAGE. Compound 1 exhibited no fluorescence in the absence of proteins; however, it exhibited strong fluorescence on the addition of bovine serum albumin as a result of intramolecular charge transfer. Compared with the conventional protocols for in‐gel protein staining, such as SYPRO Ruby and silver staining, 1 achieves higher sensitivity, even though it offers a simplified, higher throughput protocol. In fact, the total time required for protein staining was 60–90 min under optimum conditions much shorter than that required by the less‐sensitive silver staining or SYPRO Ruby staining protocols. Moreover, 1 was successfully applied to protein identification by mass spectrometry via in‐gel tryptic digestion, Western blotting, and native PAGE together with protein staining by 1 , which is a modified protocol of blue native PAGE (BN‐PAGE). Thus, 1 may facilitate high‐sensitivity protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields.  相似文献   

12.
Hwang SY  Jin LT  Yoo GS  Choi JK 《Electrophoresis》2006,27(9):1744-1748
A sensitive silver staining method using eriochrome black T as a silver-ion sensitizer for DNA detection in polyacrylamide gels was developed. The sensitivity of this staining method was significantly improved by the new silver-ion sensitizer containing a diazo group, which has reducing power. The staining method lasted a total of approximately 15 min following a fixing step for 2 x 20 min. The detection limit of this staining method was 1-4 pg for PhiX174 DNA/HaeIII in both nondenaturing and denaturing polyacrylamide gels. This staining method was especially effective in low-base pair DNA, with a sensitivity that was approximately ten-fold higher than previously published silver staining methods.  相似文献   

13.
Wang W  Vignani R  Scali M  Cresti M 《Electrophoresis》2006,27(13):2782-2786
A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.  相似文献   

14.
An optimal method of DNA silver staining in polyacrylamide gels   总被引:6,自引:0,他引:6  
Ji YT  Qu CQ  Cao BY 《Electrophoresis》2007,28(8):1173-1175
A silver staining technique has widely been used to detect DNA fragments with high sensitivity on polyacrylamide gels. The conventional procedure of the silver staining is tedious, which takes about 40-60 min and needs five or six kinds of chemicals and four kinds of solutions. Although our previous improved method reduced several steps, it still needed six kinds of chemicals. The objective of this study was to improve further the existing procedures and develop an optimal method for DNA silver staining on polyacrylamide gels. The novel procedure could be completed with only four chemicals and two solutions within 20 min. The steps of ethanol, acetic acid, and nitric acid precession before silver impregnation have been eliminated and the minimal AgNO3 dose has been used in this up-to-date method. The polyacrylamide gel of the DNA silver staining displayed a golden yellow and transparent background with high sensitivity. The minimum 0.44 and 3.5 ng of DNA amount could be detected in denaturing and nondenaturing polyacrylamide gel, respectively. This result indicated that our optimal method can save time and cost, and still keep a high sensitivity for DNA staining in polyacrylamide gels.  相似文献   

15.
Recovery of intact proteins from silver stained gels   总被引:1,自引:0,他引:1  
Nesatyy VJ  Ross NW 《The Analyst》2002,127(9):1180-1187
Silver stained proteins of a wide molecular weight (MW) range (20-116 kDa) were successfully recovered by both electroblot and electroelution. The recovery was demonstrated for nanogram loads of proteins separated by SDS-PAGE and visualized by silver staining methods compatible and incompatible with mass spectrometry (MS). It was shown that the alcohol/acid and glutaraldehyde fixation steps present in a number of staining procedures did not prevent recovery of intact proteins from gels. It was found that the recovery of intact proteins from silver stained gels was substantially increased upon pre-equilibration in a buffer containing the reducing agent, dithiothreitol (DTT). The effect of destaining on the recovery of silver stained proteins was also investigated. Comparable recovery of intact proteins within a wide MW range from silver stained gels with and without destaining step was demonstrated. Recovery of model proteins from gels visualized using silver staining method compatible with MS showed 52 to 76% yield of that from the unstained gel, depending upon method of the transfer. Comparison of the recovery of intact proteins from gels visualized using other staining procedures was also made. The above findings have implications as to the supposed irreversible nature of protein "fixation" inside polyacrylamide matrix, and confirm lack of binding of proteins in the gel to metal silver deposited on its surface. This method has the potential to be suitable for direct characterization of proteins by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) without additional purification steps.  相似文献   

16.
The availability of easy-to-handle, sensitive, and cost-effective protein staining protocols for 2-DE, in conjunction with a high compatibility for subsequent MS analysis, is still a prerequisite for successful proteome research. In this article we describe a quick and easy-to-use methodological protocol based on sensitive, homogeneous, and MS-compatible silver nitrate protein staining, in combination with an in-gel digestion, employing the Millipore 96-well ZipPlate system for peptide preparation. The improved quality and MS compatibility of the generated protein digests, as compared to the otherwise weakly MS-compatible silver nitrate staining, were evaluated on real tissue samples by analyzing 192 Coomassie-stained protein spots against their counterparts from a silver-stained 2-DE gel. Furthermore, the applicability of the experimental setup was evaluated and demonstrated by the analysis of a large-scale MALDI-TOF MS experiment, in which we analyzed an additional ~1000 protein spots from 2-DE gels from mouse liver and mouse brain tissue.  相似文献   

17.
A rapid and highly sensitive silver staining method, originally developed for the detection of proteins, was slightly modified to detect nucleic acids in polyacrylamide gels. The second exons of the histocompatibility antigen HLA-DQA 1 and DQB 1 genes were selectively amplified from genomic DNA by the polymerase chain reaction (PCR). Digestion of the PCR products by endonucleases, followed by their size-separation on polyacrylamide gels and visualization by silver staining, allowed us to define the HLA-DQ alleles of the genomic DNA. The intensity of staining of digested PCR-amplified DNA is linear from at least 8 to 18 ng for fragments of lengths ranging from approximately 40 to 200 bp. Thus, silver staining in combination with PCR and allele-specific restriction fragment length polymorphism provides a simple, safe, and rapid method for accurate definition of HLA-DQ alleles at the nucleotide level in the clinical typing laboratory.  相似文献   

18.
In order to assess secretory pancreatic proteins in a two-dimensional isoelectric focusing/sodium dodecyl sulphate electrophoresis gel, a highly sensitive double-staining method with Coomassie Brilliant Blue followed by silver stain was used. This combined procedure afforded more distinct spots and additional bands, particularly glycoproteins, than either silver or Coomassie Blue staining alone. As measurements of dye volumes by densitometry have shown, double staining of two-dimensional separated pancreatic proteins is up to twenty times more sensitive than the usual Coomassie Brilliant Blue staining.  相似文献   

19.
A 2-D native-PAGE/SDS-PAGE method for detecting the subunit components of protein oligomers at low picomole sensitivity is presented. IgG was electrophoresed in a native acidic polyacrylamide gel in amounts ranging from 51 pmol to 60 fmol. Silver-staining (native fast silver stain, ammoniacal silver stain, permanganate silver stain), Coomassie-staining (R-250, G-250), metal ion-reverse-staining (zinc, copper), and fluorescent chromophore-staining (SYPRO Ruby) methods were used to visualize the IgG oligomers. The protein zones were then excised, separated by SDS-PAGE, and subunits visualized with a permanganate silver stain. The Coomassie R-250/permanganate silver-staining combination detected IgG subunits using 2 pmol of sample. Coomassie G-250 and native fast silver staining in the first-dimensional gel produced detectable subunits in the second-dimensional separation at 3 and 13 pmol, respectively. Staining with silver (ammoniacal, permanganate), copper, zinc, or SYPRO Ruby in the first-dimensional gel did not produce discernible subunits in the second-dimensional gels due to protein streaking or protein immobilization in the native gel. When using a 2-D native-PAGE/SDS-PAGE system, Coomassie staining of the first-dimensional native gel combined with permanganate silver staining of the second-dimensional denaturing gel provides the most sensitive method (2-3 pmol) for visualizing constituent subunits from their oligomeric assemblies.  相似文献   

20.
Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号