首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
对自身不发荧光且不便于荧光标记的化学或生物学样品,集相干反斯托克斯拉曼散射与激光共焦扫描显微镜于一身的相干反斯托克斯拉曼散射显微镜是一种好的选择。因为相干反斯托克斯拉曼散射是一种非线性过程,相干反斯托克斯拉曼散射显微镜的显微成像特性与一般的共焦显微镜非常不同。首先计算了焦点附近相干反斯托克斯拉曼散射激发场的偏振分布,然后,利用格林函数方法,得到了以赫兹偶极子为源的波动方程的精确解,发现对于不同的成像配置和样品形状,像场的相干反斯托克斯拉曼散射场分布非常不同,因此传统的显微镜成像表征方式(如点扩展函数)将不再能描述相干反斯托克斯拉曼散射显微镜的成像特性。  相似文献   

2.
纳米分辨相干反斯托克斯拉曼散射显微成像   总被引:1,自引:0,他引:1       下载免费PDF全文
张赛文  陈丹妮  刘双龙  刘伟  牛憨笨 《物理学报》2015,64(22):223301-223301
采用附加探测光声子耗尽法来实现超衍射极限相干反斯托克斯拉曼散射显微成像. 此方法引入一束环形分布的附加探测光来消耗点扩展函数周边的相干声子, 实现点扩展函数的改造, 从而达到超越衍射极限的空间分辨率. 为了获得更高的空间分辨率和更佳的相位匹配条件, 通常需采用高数值孔径物镜对抽运光、斯托克斯光和探测光进行聚焦, 此时标量衍射理论不再成立. 基于矢量衍射理论, 分析了线偏振光、圆偏振光先后经过螺旋相位片和高数值孔径物镜后的光强分布, 结果表明: 圆偏振光在高数值孔径物镜后焦平面的光强分布呈中心对称状, 较线偏振环形光更适合作为附加探测光. 此外, 采用全量子理论分析了附加探测光声子耗尽法. 结果表明: 当附加探测光与探测光强度比为80时, 成像系统的横向空间分辨率可以达到45 nm; 继续提高附加探测光强度, 空间分辨将进一步提高.  相似文献   

3.
相干反斯托克斯拉曼散射显微成像技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘双龙  刘伟  陈丹妮  屈军乐  牛憨笨 《物理学报》2016,65(6):64204-064204
基于全量子理论对相干反斯托克斯拉曼散射(CARS)过程进行了分析, 在此基础上搭建了单频CARS显微成像系统, 获得了不同尺寸聚苯乙烯微球高对比度的CARS显微图像. 为了标定成像系统的空间分辨率, 采用逐点扫描方式对直径为110 nm聚苯乙烯微球成像, 从而重构出系统的点扩展函数. 结果表明: 该CARS显微成像系统的横向空间分辨率约为600 nm, 而由阿贝衍射极限决定的理论空间分辨率约为300 nm. 分析了导致分辨率降低的原因, 并提出了解决方案. 为实现纳米分辨的CARS显微成像打下了坚实的基础.  相似文献   

4.
郑娟娟  姚保利  邵晓鹏 《物理学报》2017,66(11):114206-114206
相干反斯托克斯拉曼散射(CARS)显微能够对样品的特殊化学组分进行选择性成像,无需荧光标记,在生物医学领域被广泛应用.然而,传统的CARS图像往往存在非共振背景信号.本文将基于光强传输方程的单光束相位成像技术用于CARS显微成像,来抑制CARS的非共振背景信号.该方法通过记录样品在三个相邻平面上的CARS图像,然后利用光强传输方程获取CARS光场的相位分布,最后利用共振CARS信号和非共振背景信号在相位上的差异,实现了对背景噪声的抑制.该方法无需参考光,通过三次测量可完成CARS的背景噪声抑制,具有良好的应用前景.  相似文献   

5.
侯国辉  罗腾  陈秉灵  刘杰  林子扬  陈丹妮  屈军乐 《物理学报》2017,66(10):104204-104204
双光子荧光与相干反斯托克斯拉曼散射同属于三阶非线性效应,二者之间的差异与联系是一个值得研究的问题.本文基于自行搭建的超连续谱近红外宽带相干反斯托克斯拉曼散射显微成像系统进行光谱成像,同时通过理论与实验对比分析了双光子荧光与相干反斯托克斯拉曼散射图像存在差异的原因.结果表明,具有亚微米以上横向分辨率的相干反斯托克斯拉曼散射成像系统,可以使用较大尺寸的荧光珠进行双光子荧光成像,通过解卷积得到双光子荧光成像的系统分辨率,并将它近似等效于相干反斯托克斯拉曼散射成像系统的当下分辨率.如果需要得到相干反斯托克斯拉曼散射成像系准确的分辨率结果,就必须使用尺寸比相干反斯托克斯拉曼散射成像系统实际分辨率小的球形样品进行实验测量.  相似文献   

6.
李健康  李睿 《物理学报》2021,(10):167-172
为表面增强相干反斯托克斯拉曼散射(surface enhancement coherent anti-Stokes Raman scattering,SECARS)提供具有高增强、稳定性好的等离激元增强基底是十分重要的.本文从实际出发,在理论上设计了一种新的SECARS基底,其可以利用结构自身的杂化共振与额外激发的电荷...  相似文献   

7.
由于塑料工业的发展,微塑料成为一种主要的环境污染物.它在自然界中不易降解,对人类的生存环境及健康都存在不可忽视的潜在危险.因此,环境中微塑料的检测和分析,成为了近年来研究的热点问题.目前人们大多数采用浮选法、密度分离法、离心法等方法提取微塑料,然后放在显微镜下进行目视观察,并结合拉曼光谱分析、傅里叶红外光谱分析、高光谱...  相似文献   

8.
宽带相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)光谱技术能够同时获取完整的分子CARS光谱信息,以准确识别和定量分析混合物中的不同成分或未知成分.在宽带CARS光谱技术中,由于超连续谱激光有效光谱范围内各光谱成分的作用不同,分别会产生双色和三色CARS过程.这里我们在理论上分析了宽带激发条件下两种CARS过程的产生条件,以及不同CARS光谱信号强度与各激发光功率之间的关系.在此基础上,搭建了基于SC激光的宽带CARS光谱系统,分别实现了双色和三色CARS过程.通过对获得的苯甲腈样品的CARS光谱信号进行函数拟合分析,实验验证了上述两个过程中CARS信号的强度与各激发光强度之间的函数关系.理论和实验研究结果为进一步优化宽带时间分辨CARS光谱探测和显微系统,实现同时获取物质分子完整的CARS光谱信号提供了指导.  相似文献   

9.
刘伟  陈丹妮  刘双龙  牛憨笨 《物理学报》2013,62(16):164202-164202
理论上提出一种突破衍射极限限制的相干反斯托克斯拉曼散射显微成像方法, 并对其探测极限进行分析.通过引入环形附加探测光与艾里斑周边的声子作用, 实现点扩展函数的改造, 提高相干反斯托克斯拉曼散射显微成像系统的横向空间分辨率. 随着分辨率的提高, 信号强度也随之降低, 尤其当应用于生物学、医学研究时, 样品分子数密度通常很低, 这将导致信号探测更加困难. 因此分析系统的探测极限, 确定超分辨体积元内的最小可探测分子数是展开超衍射极限相干反斯 托克斯拉曼散射显微成像实验研究的重要前提. 当泵浦光、斯托克斯光、探测光光强均达到极大值, 分辨率约40 nm三维空间内, 超衍射极限相干反斯托克斯拉曼散射显微成像系统的散粒噪声信噪比由曝 光时间与样品分子数密度决定. 曝光时间若取20 ms, 探测极限约为103, 样品分子数目只有大于探测极限, 才能保证信号可以从噪声背景中提取出来. 关键词: 突破衍射极限 相干反斯托克斯拉曼散射 非线性光学 探测极限  相似文献   

10.
相干反斯托克斯拉曼光谱(CARS)和四阶相干反斯托克斯超拉曼光谱(CAHRS)广泛应用于分子界面和生物膜表面的研究。然而,高阶非线性光学过程中分子微观极化率张量元数量众多,关系复杂,使研究者对CARS和CAHRS很难进行定量分析。采取以下方案对属于C∞v对称性的分子基团的CARS和CAHRS的微观极化率张量元进行简化。首先将CARS微观极化率张量元βi′j′k′l′表示成拉曼微观极化率张量元微分α′i′j′的乘积,CAHRS微观极化率张量元βi′j′k′l′m′表示成超拉曼微观极化率张量元微分β′i′j′k′和拉曼微观极化率张量元微分α′i′j′的乘积,再利用α′i′j′之间的比值及β′i′j′k′之间的比值得到βi′j′k′l′βi′j′k′l′m′之间的比值。使用这些CARS和CAHRS微观极化率张量元之间的关系,能够得到CARS和CAHRS光谱的广义取向泛函及其广义取向参数,进而对界面分子取向信息进行定量分析。  相似文献   

11.
杜鑫  张明福  何兴  孟庆琨  宋云飞  杨延强  韩杰才 《中国物理 B》2011,20(12):126301-126301
We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique. The temporal chirped white-light continuum (WLC) is used for the Stokes pulse, therefore we can perform the selective excitation of the phonon modes without using a complicated laser system. The expected quantum beat phenomenon is clearly observed. The theoretical formulas consist very well with the experimental results. The dephasing times of the excited phonon modes, the wavenumber difference, and the phase shift between the simultaneously excited modes are obtained and discussed. This work opens up a way to study directly high-frequency coherent phonon dynamics in bulk crystals on a femtosecond time scale and is especially helpful for understanding the nature of coherent phonons.  相似文献   

12.
In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 109 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.  相似文献   

13.
采用钛宝石飞秒激光器输出的一部分光抽运光子晶体光纤以产生超连续光谱,作为抽运光和斯托克斯光,另一部分飞秒激光作为探测光,并结合时间延迟方法,建立超连续光谱激发时间分辨相干反斯托克斯拉曼散射(CARS)实验系统,测试了具有较宽拉曼光谱的二甲基亚砜样品.实验结果表明,所建立的实验系统能有效抑制非共振背景噪声,并且通过一次测量,即可获得二甲基亚砜在690—3200cm-1范围内的CARS光谱信息,获得的二甲基亚砜CARS光谱范围达到2500cm-1.同时给出了所采用的光子晶体光纤光谱展宽的实验结果.  相似文献   

14.
张诗按  张晖  王祖赓  孙真荣 《中国物理 B》2010,19(4):43201-043201
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the $\pi $ spectral phase step.  相似文献   

15.
We performed femtosecond time-resolved coherent anti-Stokes Raman scattering(fs-CARS) measurements on liquid toluene and PVK film.For both samples,we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals.The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes,which demonstrates that a coherent coupling between the vibrational modes of the C-H chemical bonds exists at the different positions of the molecules.The dephasing times of the excited modes are obtained simultaneously.  相似文献   

16.
杜鑫  何兴  刘玉强  王英惠  杨延强 《中国物理 B》2012,21(3):34210-034210
We performed femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) measurements on liquid toluene and PVK film. For both samples, we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals. The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes, which demonstrates that a coherent coupling between the vibrational modes of the C-H chemical bonds exists at the different positions of the molecules. The dephasing times of the excited modes are obtained simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号