首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and Crystal Structure of Magnesium Bis[bis(trimethylsilyl)phosphide] · DME Magnesium bis[bis(trimethylsilyl)phosphide] crystallizes in the tetragonal space group I4 c2 with a = 1652.9(2); c = 2282.6(5) pm and Z = 8. The magnesium atom is distorted tetrahedrally surrounded by two oxygen and two phosphorus atoms with Mg? P- and Mg? O-bond lengths of 248.7(2) and 204.7(5) pm, respectively. The phosphorus atom displays a trigonal pyramidal coordination.  相似文献   

2.
Synthesis and Characterization of Hetero-bimetallic Bis(trimethylsilyl)phosphanides of Barium and Tin The reaction of barium bis[bis(trimethylsilyl)amide] with one equivalent of bis(trimethylsilyl)phosphane in 1,2-dimethoxyethane (dme) yields the heteroleptic dimeric (dme)barium bis(trimethylsilyl)amide bis(trimethylsilyl)phosphanide. This colorless compound crystallizes in the monoclinic space group P21/n with a = 1 259.1(3), b = 1 822.7(4), c = 1 516.1(3) pm, β = 110.54(3)° and Z = 4. The central moiety of the centrosymmetric molecule is the planar Ba2P2-cycle with Ba? P-bond lengths of 329 and 334 pm. In the presence of bis[bis(trimethylsilyl)amino]stannylene hetero-bimetallic bis(trimethylsilyl)phosphanides of tin(II) and barium are isolated. If the reaction of Ba[N(SiMe3)2]2 and Sn[N(SiMe3)2]2 in the molar ratio of 1:2 with six equivalents of HP(SiMe3)2 is performed in toluene, barium bis{tin(II)-tris[bis(trimethylsilyl)phosphanide]} can be isolated. This compound crystallizes in the orthorhombic space group P212121 with a = 1 265.1(1), b = 2 290.1(3), c = 2 731.9(3) pm and Z = 4. The anions {Sn[P(SiMe3)2]3}? bind as two-dentate ligands to the barium atom which shows the extraordinary low coordination number of four. The addition of tetrahydrofuran (thf) to the above mentioned reaction solution leads to the elimination of tris(trimethylsilyl)phosphane and the formation of thf complexes of barium bis{tin(II)-bis(trimethylsilyl)phosphanide-trimethylsilylphosphandiide}. The derivative crystallizes from toluene in the monoclinic space group P21/c with a = 1 301.9(2), b = 2 316.3(3), c = 3 968.7(5) pm, β = 99.29(1)° and Z = 8.  相似文献   

3.
Synthesis, Properties, and Structure of the Amine Adducts of Lithium Tris[bis(trimethylsilyl)methyl]zincates . Bis[bis(trimethylsilyl)methyl]zinc and the aliphatic amine 1,3,5-trimethyl-1,3,5-triazinane (tmta) yield in n-pentane the 1:1 adduct, the tmta molecule bonds as an unidentate ligand to the zinc atom. Bis[bis(trimethylsilyl)methyl]zinc · tmta crystallizes in the triclinic space group P1 with {a = 897.7(3); b = 1 114.4(4); c = 1 627.6(6) pm; α = 90.52(1); β = 103.26(1); γ = 102.09(1)°; Z = 2}. The central C2ZnN moiety displays a nearly T-shaped configuration with a CZnC angle of 157° and Zn? C bond lengths of 199 pm. The Zn? N distances of 239 pm are remarkably long and resemble the loose coordination of this amine; a nearly complete dissociation of this complex is also observed in benzene. The addition of aliphatic amines such as tmta or tmeda to an equimolar etheral solution of lithium bis(trimethylsilyl)methanide and bis[bis(trimethylsilyl)methyl]zinc leads to the formation of the amine adducts of lithium tris[bis(trimethylsilyl)methyl]zincate. Lithium tris[bis(trimethylsilyl)methyl]zincate · tmeda · 2 Et2O crystallizes in the orthorhombic space group Pbca with {a = 1 920.2(4); b = 2 243.7(5); c = 2 390.9(5) pm; Z = 8}. In the solid state solvent separated ions are observed; the lithium cation is distorted tetrahedrally surrounded by the two nitrogen atoms of the tmeda ligand and the oxygen atoms of both the diethylether molecules. The zinc atom is trigonal planar coordinated; the long Zn? C bonds with a value of 209 pm can be attributed to the steric and electrostatic repulsion of the three carbanionic bis(trimethylsilyl)methyl substituents.  相似文献   

4.
5.
Preparation and Structures of Monomeric Bis(thiophenolato)metal(II) Complexes Sodium-2,4,6-tris(trifluoromethyl)thiophenolate (NaSRf) reacts with MCl2 (M = Zn, Pb) in the molar ratio of 2:1 to form the bis(thiophenolato)metal(II)complexes bis[2,4,6-tris(trifluoromethyl)thiophenolato]zinc 1 and bis[2,4,6-tris(trifluoromethyl)thiophenolato]lead 2 . Reaction of Mn[N(SiMe3)2]2· THF with two equivalents of 2,4,6-tris(trifluoromethyl)thiophenol (RfSH) forms Mn(SRf)2 · THF 3 . All compounds crystallize as THF adducts. The structures of Zn(SRf)2 · 2THF 1a , Pb(SRf)2 · THF 2a and Mn(SRf)2 · 2THF 3a are discussed.  相似文献   

6.
Synthesis, Properties, and X-Ray Structure Determination of [Li(OC4H8)4][((CH3)3Si)3C–InBr3] The reaction of InBr3 with LiR* · (THF)n (R* = –C(SiMe3)3, THF = OC4H8) in a 1 : 1 molar ratio forms [Li(THF)4][R*InBr3] in good yield. The properties and some spectroscopic data (1H, 13C, 29Si, 7Li–NMR, IR and Raman) of this trisyl-tribromoindate are given and the crystal structure has been determined.  相似文献   

7.
Synthesis of Trimethylsilyl Substituted Polyhedra of Calcium, Tin(II), and Phosphorus The reaction of calcium-bis[bis(trimethylsilyl)amide] with bis(trimethylsilyl)phosphane in thf yields the heteroleptic, dimeric (tetrahydrofuran-O)calcium-bis(trimethylsilyl)amidebis(trimethylsilyl)phosphanide 1 (triclinic, P 1 , a = 1066,6(2), b = 1141,3(2), c = 1226,6(2)pm, α = 97,78(3)°, β = 107,47(3)°, γ = 101,12(3)°, Z = 1 dimer). The bridging phosphanide-substituent displays with Ca? P bond lengths of 292,6 and 300,5 pm a distortion of the four-membered Ca2P2-cycle. The reaction with another equivalent of HP(SiMe3)2 in thf leads to the formation of tetrakis(tetrahydrofuran-O)calcium-bis[bis(trimethylsilyl)phosphanide] 2 mit Ca? P distances of 292 pm (monoclinic, P21/c, a = 1626,0(3), b = 1295,3(4), c = 2039,5(5) pm, β = 102,60(2)°, Z = 4). The performance of the reaction in the presence of bis[bis(trimethylsilyl)amino]stannylene yields heterobimetallic compounds with a central polyhedron of Ca-, Sn- and P-atoms. Dependent on the Sn/Ca ratio the isolation of tris(trimethylsilyl)phosphane as well as bis[tris(tetrahydrofuran-O)calcium]-ditin(II)-tetrakis(μ3-trimethylsilylphosphandiide) 3 with a central dicalcia-distanna-tetraphosphacubane-fragment or (thf)2CaSn2[μ-P(SiMe3)2]23-PSiMe3]2 4 (orthorhombic, Pnma, a = 2247,7(2), b = 1868,9(1), c = 1168,0(1) pm, Z = 4), respectively, succeeds. The Ca? P distances lie at 291 pm.  相似文献   

8.
Synthesis, Structure, and Reactivity of Bis(dialkylamino)diphosphines Starting with the aminochlorophosphines iPr2N? PCl2 1 and (iPr2N)2P? Cl 2 , the synthesis of some new functionalized aminophosphines (iPr2N)2P? SiMe3 3a , (iPr2N)2P? SnMe3 3b , (iPr2N)(DMP)P? Cl 4 , iPr2N? P(SiMe3)2 5 and iPr2N? P(SiMe3)Cl 6 is reported. Reactions of 2 with different phosphides yield the aminodiphosphines (iPr2N)2P? P(SiMe3)2 7a , (iPr2N)2P? P(SiMe2tBu)2 7b , (iPr2N)2P? PPh2 8 and (iPr2N)2P? PH2 9 . The phosphines 3a/b react with halogenophosphines to the aminohalogenodiphosphines (iPr2N)2P? PCl2 10 , (iPr2N)2P? PtBuCl 11 and (iPr2N)2P? P(NiPr2)Cl 12 . The ambivalente aminophosphine 6 gives the aminotrichlorodiphosphine Cl(iPr2N)P? PCl2 13 after condensation with PCl3, while the reactions with the corresponding lithiumphosphides yield the aminosilyldiphosphines (iPr2N)(SiMe3)P? P(SiMe3)2 14a and (iPr2N)(SiMe3)P? P(SiMe2tBu)2 14b . The aminochlorophosphines 2/4 are reductively coupled with magnesium leading to the symmetrically substituted tetraaminodiphosphines (iPr2N)2P? P(iPr2N)2 15a and DMP(iPr2N)P? P(iPr2N)DMP 15b . The functionalized aminosilyldiphosphine 7a is treated with methanol to yield the diphosphine (iPr2N)2P? PH(SiMe3) 16 and gives the lithium phosphinophosphide (iPr2N)2P? PLi(SiMe3) 17 after metallation with n-BuLi. The compounds are characterized by their NMR and mass spectra and the 31P-NMR values of the diphosphines are discussed according to their substituents. The crystal structures of 7b, 8 and 15b showing significantly differing conformations are presented.  相似文献   

9.
Bis[tris(trimethylsilyl)silyl] Zinc, Cadmium, and Mercury – a Structural Study by IR and Raman Spectroscopy and X-Ray Analyses Raman and FT-IR spectra of bis[tris(trimethylsilyl)silyl] zinc ( 1 ), cadmium ( 2 ) and mercury ( 3 ) were recorded. The vibrational data are in agreement with either D3h or a D3d symmetry. The latter had been shown to be the correct one at least for the solid state by X-ray diffraction experiments. All three compounds crystallize isomorphically in the triclinic centrosymmetric space group P1 . [ 2 (T = 293 K): a = 9.4388(11); b = 9.744(2); c = 12.926(2); α = 68.200(12); β = 71.971(10); γ = 60.925(10); Z = 1; (T = 173 K): a = 9.336(6); b = 9.585(5); c = 12.488(8); α = 68.77(4); β = 72.28(4); γ = 62.06(4); 3 : a = 9.467(2); b = 9.749(2); c = 12.885(2); α = 67.840(14); β = 71.510(14); γ = 60.890(14); Z = 1]. The Hg—Si bondlength in 3 was found to be 246.9(2)pm, somewhat shorter then in all disilylmercury derivatives investigated sofar and even shorter than the Cd—Si bond in 2 (250.4(1)pm). Bondlengths and angles within the tris(trimethylsilyl)silyl group are virtually equal in all three group 12 derivatives and lie in the expected range.  相似文献   

10.
Homo- and Heteroleptic Zinc Arsanides — Syntheses and Structure Bis(trimethylsilyl)arsane reacts with dialkylzinc ZnR2 (R = Me, Et, CH2SiMe3) in the stoichiometric ratio of 1 : 1 in hydrocarbons to the heteroleptic alkyl zink bis(trimethylsilyl)arsanides. The steric demand of the alkyl substituent enforces the oligomerisation degree of two or three. Diethylzinc and two equivalents of HAs(SiMe3)2 yield dimeric zinc bis[bis(trimethylsilyl)arsanide]. Methyl zinc bis(trimethylsilyl)arsanide crystallizes as a trimer with a six-membered Zn3As3-cycle in the twist-boat conformation {orthorhombic, P212121, a = 1 015.3(1), b = 1 887.6(4), c = 2 272.9(4) pm, Z = 4}. The molecule of ethyl zinc bis(trimethylsilyl)arsanide is built similar in the solid state {monoclinic, P21/n, a = 1 220.2(4), b = 1 889.0(6), c = 1 968.5(6) pm, β = 90.24(1)°, Z = 4}. However, zinc bis[bis(trimethylsilyl)arsanide] separates due to the steric demand of the terminal (Me3Si)2As-ligand as a dimer in the triclinic space group P1 {a = 967.8(2), b = 1 088.5(2), c = 1 238.1(2) pm, α = 92.41(1), β = 105.20(1), γ = 105.05(1)°, Z = 2}. The endocyclic zinc-arsenic distances vary only slightly around 248 pm, but the exocyclic one is with a value of 238 pm drastically shorter. The Zn? C bond lengths with values around 197 pm lie in the characteristic region for zinc with the coordination number of three.  相似文献   

11.
Synthesis, Properties, and Structure of Octameric Titanium Imide Chloride [Ti(NSiMe3)Cl2]8 The reaction of TiCl4 with N(SiMe3)3 in sealed glas-tubes yields the titanium imide chloride [Ti(NSiMe3)Cl2]8 ( 1 ). It crystallizes in the space group C2/c with a = 2 704.5(4), b = 1 303.9(1), c = 2 205.4(2) pm, β = 112.78(1)°, Z = 4. In 1 six Ti atoms are linked together by chloro and trimethylsilylimido bridges to form a ring structure. Two TiCl2-groups are bound in addition to the ring by two imido bridges. Upon annealing at 250°C 1 transformes to the isomeric polymer [Ti(NSiMe3)Cl2]n. Above 250°C 1 decomposes under separation of Me3SiCl affording TiNCl.  相似文献   

12.
The diiodoalanes (C5H7R2N2)AlI2 [ 6 ; R = Me ( a ), Ph ( c )] are obtained from the corresponding alanes (C5H7R2N2)AlH2 ( 5 ) and [Me3NH]I in good yields. (C5H7R2N2)AlI2 [ 6 ; R = iso‐Pr ( b )] is alternatively prepared, as well as 6a , from the corresponding vinamidine lithium compound C5H7R2NLi ( 8 ) and AlI3. (C5H7Me2N2)AlBr2 ( 9a ) is formed according to both methods. The X‐ray structures of 6a and 6b are reported.  相似文献   

13.
14.
Synthesis and Structure of Crown Ether Complexes of Potassium Hexachlorodipalladate(II) and -diplatinate(II) K2[MCl4] (M ? Pd, Pt) reacts with an excess of crown ether 18-crown-6 in water to give the crown ether complexes of potassium hexachlorodipalladate(II) and -diplatinate(II) [K(18-cr-6)]2[M2Cl6] (M ? Pd, 1 ; M ? Pt, 3 ), respectively, and in methylene chloride to give those of potassium tetrachloropalladate(II) and -platinate(II) [K(18-cr-6)]2[MCl4] ( 1 ) (M ? Pd, 2 ; M ? Pt, 4 ), respectively. 1 - 4 are characterized by microanalysis, NMR (1H, 13C), and vibrational spectroscopy. The X-ray structure analyses of the isotypic complexes 1 (P21/c; a = 10,9678(8), b = 8,2991(7), c = 22,469(2) Å, β = 98,523(5)°; Z = 2) and 3 (P21/c; a = 10,934(3), b = 8.376(3), c = 22,410(5) Å, β = 98,77(3)°; Z = 2) reveal [M2Cl6]2? anions of nearly D2h symmetry and [K(18-cr-6)]+ cations, in which the distance of K+ to the mean plane of the crown ether defined by its six oxygen atoms amounts to 0,830(4) Å in 1 and 0,821(2) Å in 3 , respectively. There are tight contacts between cations and anions (d(K-Cl): 3,341(2)/3,260(2) Å ( 1 ); 3,348(4)/3,259(4) Å ( 3 )).  相似文献   

15.
Synthesis, Crystal Structure, and Phase Transition of Se4(MoOCl4)2 Dark green, very air sensitive crystals of Se4(MoOCl4)2 are formed from selenium and MoOCl4 at 190°C in a sealed, evacuated glass ampoule in quantitative yield. The structure is built of nearly square planar Se42+ ions and centrosymmetric dimeric MoOCl4? ions which are linked by bridging Cl atoms. At ?21°C Se4(MoOCl4)2 undergoes a reversible solid state phase transition of first order. Structure determinations at ?70°C and 23°C show that during the phase transition the structures of the ions remain unchanged, while the orientations of the ions with respect to each other change in such a way that in the low temperature form the Se42+ ions obtain a higher coordination number by Cl and O atoms of neighboring MoOCl4? ions.  相似文献   

16.
Synthesis, NMR Spectroscopic Characterization and Structure of Bis(1,2-dimethoxyethane-O,O′)barium Bis[1,3-bis(trimethylsilyl)-2-phenyl-1-aza-3-phosphapropenide] Barium-bis[bis(trimethylsilyl)phosphanide] 1 reacts with two equivalents of benzonitrile to give barium bis[1,3-bis(trimethylsilyl)-2-phenyl-1-aza-3-phosphapropenide]; the choice of the solvent determines whether a tris-(tetrahydrofuran)- or a bis(1,2-dimethoxyethane)-complex 2 can be isolated. 2 crystallizes from DME as red cuboids (monoclinic, C2/c, a = 1627.0(3), b = 1836.6(3), c = 1602.5(2) pm; β = 96.071(12)°; V = 4761.7(12); Z = 4; wR2 = 0.0851). The phosphorus atom displays a pyramidal surrounding in contrast to the planar coordination sphere of the nitrogen atom. In addition a twist within the P? C? N skeleton of the heteroallyl anion is observed.  相似文献   

17.
Metal Derivatives of Molecular Compounds. VII. Bis[1,2-bis(dimethylamino)ethane-N,N′]lithium Disilylphosphanide — Synthesis and Structure Crystalline lithium phosphanides studied so far show a remarkably high diversity of structure types dependent on the ligands at lithium and the substituents at phosphorus. Bis[1,2-bis(dimethylamino)ethane-N,N′]lithium disilylphosphanide ( 1 ) discussed here, belongs to the up to now small group of compounds which are ionic in the solid state. It is best prepared from silylphosphane by twofold lithiation with lithium dimethylphosphanide first and subsequent monosilylation with silyl trifluoromethanesulfonate, followed by complexation. As found by X-ray structure determination (wR = 0.038) on crystals obtained from diethyl ether {monoclinic; space group P21/c; a = 897.8(1); b = 1 673.6(2); c = 1 466.8(1) pm; β = 90.73(1)° at ?100 ± 3°C; Z = 4 formula units}, the lithium cation is tetrahedrally coordinated by four nitrogen atoms of two 1,2-bis(dimethylamino)ethane molecules. Characteristic parameters of the disilylphosphanide anion are a shortened average P? Si bond length of 217 pm (standard value 225 pm) and a Si? P? Si angle of 92.3°.  相似文献   

18.
Structure and Thermal Degradation of Bis(1,3-diketonato)cobaltbisimidazoles The crystal structure of Co(bzac)2(HIm)2. 2MeOH ( I ) and Co(acac)2(HIm)2 ( II ) were determined by x-ray diffraction. II : triclinic, space group P1 , Z = 2, a = 746.3(1), b = 948.2(1), c = 1396.7(2)pm, α = 85.18(1)°, β = 88.96(1)°, γ = 80.72(1)°, R = 3.0% for a total of 2194 observed reflections. I : monoclinic, P21/c, Z = 2, a = 964.2(3), b = 864.5(2), c = 1769.8(4)pm, β = 98.87(2)°, R = 4.7% for a total of 967 observed reflections. In both compounds centrosymmetric molecules with two bidentate diketonato groups and two imidazole ligands in trans-position are present. The molecules of II are linked by N? H…?O-bridges within layers, while in the lattice of I by the interaction with methanol molecules N-H…?O-H…?O-bridges are formed. The nature of the H-bridges is the deciding factor for the first step of the thermal degradation of the complexes. The N-H…?O-bridges of II relieves the change of the acidic protons of the imidazole to the acetylacetonato ligands. Therefore in the first step acetylacetone is eliminated. No such bridges are present in the complex I . Therefore, in the first step, imidazole and methanol are removed. On heating in O-donor solvents the reaction of I is quite analogous, and this is the reason for the application of this complex as a latent initiator of the epoxide polymerisation.  相似文献   

19.
Crystal and Molecular Structure of Bis(pyridine)bis(trifluoromethyl)zinc Bis(pyridin)bis(trifluoromethyl)zinc 1 has been isolated and characterized by means of single-crystal X-ray diffraction techniques. The title compound represents the first structure determination of a fully fluorinated alkylzinc compound (monoclinic, space group P21/c, Z = 4, a = 8.856(3), b = 18.158(3), c = 8.979(3) Å, β = 98.14(2)°, R = 0.054, Rw = 0.035). The zinc atom is in a distorted tetrahedral environment. The molecular structure of [ClZn(CCl2CF3) η2O]2 2 was solved, but is not included in a structural comparison due to crystallographic disorder.  相似文献   

20.
Synthesis and Structure of Silver(II) Tetrafluoroaurate(III) Ag[AuF4]2 Intensive green single crystals of Ag[AuF4]2 can be obtained by heating up micro crystalline Ag[AuF4]2 in autoclaves (p(F2) ~ 200 bar, T ~ 400°C, t ~ 14 d). It crystallizes monoclinic, space group P21/n ? C; (No. 14) with a = 522.3(1), b = 1101.3(3), c = 550.5(2) pm, β = 94.98(3), Z = 2 and is isotypic with Pd[AuF4]2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号