首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Zusammenfassung Mit Hilfe des Pseudoneonmodells wurden die Energien der aus den folgenden Konfigurationen hervorgehenden Terme bzw. Mittelwerte dieser Energien für das Methanmolekül bestimmt: [(1s)2 (2s)2 (2p)6], [(1s)1 (2s)2 (2p)6], [(1s)1 (2s)2 (2p)6 (3p)1], [(1s)1 (2s)2 (2p)6 (4p)1], [(1s)1 (2s)2 (2p)6 (3d)1], [(1s)2 (2s)1 (2p)5], [(1s)2 (2s)2 (2p)4] und [(1s)2 (2s)0 (2p)6].Die Energien wurden mit Hilfe der Slater-Condonschen Regeln analytisch berechnet und dann mit einer elektronischen Rechenmaschine (Zuse 23) minimisiert.Aus den erhaltenen Energiewerten wurde die Lage der Röntgen- und Auger-Linien des Methans berechnet. Die von Mehlhorn [8] gemessenen Auger-Elektronenenergien konnten zugeordnet werden.Die Rechenergebnisse stimmen mit den von Chun aus Röntgenabsorptionsmessungen ermittelten experimentellen Werten befriedigend überein.
The pseudo neon model is used to calculate the energies of the levels deriving from the following configurations (or their mean values) of the methane molecule: [(1s)2 (2s)2 (2p)6], [(1s)1(2s)2(2p)6], [(1s)1(2s)2(2p)6(3p)1], [(1s)1 (2s)2 (2p)6 (4p)1], [(1s)1 (2s)2 (2p)6 (3d)1], [(1s)2 (2s)1 (2p)5], [(1s)2 (2s)2 (2p)4] and [(1s)2 (2s)2 (2p)6].The energy expressions are given by the Slater-Condon rules; the minimization is done with a digital computer (Zuse 23). Prom the energy values obtained the X-ray and Auger lines of methane are calculated. An interpretation of the experimental Auger electron energies of Mehlhorn [8] is made.Calculated and measured (by Chun) values are in satisfactory agreement with each other.

Résumé A l'aide du modèle du pseudo-atome de néon, les énergies des niveaux dérivant des configurations suivantes (ou leurs moyens) ont été calculées: [(1s)2 (2s)2 (2p)6], [(1s)1 (2s)2 (2p)6], [(1s)1(2s)2(2p)6(3p)1], [(1s)1(2s)2(2p)6(4p)1], [(1s)1 (2s)2 (2p)6 (3d)1], [(1s)2 (2s)1 (2p)5], [(1s)2 (2s)2 (2p)4] et [(1s)2 (2s)0 (2p)6].Les énergies sont données par les règles de Slater et Condon et minimisées à l'aide d'une machine à calculer électronique (Zuse 23).On en dérive les spectres X et d'Auger du méthane. Nous pouvions interpréter les énergies des électrons Auger mesurées par Mehlhorn [8]. Les calculs s'accordent assez bien aux valeurs expérimentales de Chun.


Auszug aus der Dissertation von T. K. Ha, Frankfurt am Main, 1963.  相似文献   

2.
A simple and effective synthetic route to homo‐ and heteroleptic rare‐earth (Ln = Y, La and Nd) complexes with a tridentate Schiff base anion has been demonstrated using exchange reactions of rare‐earth chlorides with in‐situ‐generated sodium (E)‐2‐{[(2‐methoxyphenyl)imino]methyl}phenoxide in different molar ratios in absolute methanol. Five crystal structures have been determined and studied, namely tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)lanthanum, [La(C14H12NO2)3], ( 1 ), tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐κ3O1,N,O2)neodymium tetrahydrofuran disolvate, [La(C14H12NO2)3]·2C4H8O, ( 2 )·2THF, tris(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐κ3O1,N,O23O1,N,O22N,O1‐yttrium, [Y(C14H12NO2)3], ( 3 ), dichlorido‐1κCl,2κCl‐μ‐methanolato‐1:2κ2O:O‐methanol‐2κO‐(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato)‐1κ3O1,N,O2;2κ3O1,N,O2‐diyttrium–tetrahydrofuran–methanol (1/1/1), [Y2(C14H12NO2)3(CH3O)Cl2(CH4O)]·CH4O·C4H8O, ( 4 )·MeOH·THF, and bis(μ‐2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐1κ3O1,N,O2:2κO1)bis(2‐{[(2‐methoxyphenyl)imino]methyl}phenolato‐2κ3O1,N,O2)sodiumyttrium chloroform disolvate, [NaY(C14H12NO2)4]·2CHCl3, ( 5 )·2CHCl3. Structural peculiarities of homoleptic tris(iminophenoxide)s ( 1 )–( 3 ), binuclear tris(iminophenoxide) ( 4 ) and homoleptic ate tetrakis(iminophenoxide) ( 5 ) are discussed. The nonflat Schiff base ligand displays μ2‐κ3O1,N,O2O1 bridging, and κ3O1,N,O2 and κ2N,O1 terminal coordination modes, depending on steric congestion, which in turn depends on the ionic radii of the rare‐earth metals and the number of coordinated ligands. It has been demonstrated that interligand dihedral angles of the phenoxide ligand are convenient for comparing steric hindrance in complexes. ( 4 )·MeOH has a flat Y2O2 rhomboid core and exhibits both inter‐ and intramolecular MeO—H…Cl hydrogen bonding. Catalytic systems based on complexes ( 1 )–( 3 ) and ( 5 ) have demonstrated medium catalytic performance in acrylonitrile polymerization, providing polyacrylonitrile samples with narrow polydispersity.  相似文献   

3.
The relativistic CI method is used to determine N-electron wavefunctions for the 1s 2 2s 2 2p 2 (3 P 0,3 P 2,1 D 2), 1s 2 2p 4 3 P 2 even levels, and the 1s 22s2p 3 (3 D 1,3 P 1,3 S 1,1 P 1), 1s 22s 22p3s (3 P 1 and1 P 1), 1s 22s 22p3d (3 D 1,3 P 1,1 P 1)J=1 OIII levels. Excitation energies and emission probabilities between these levels are reported in the electric dipole approximation, both for the Coulomb and the Babushkin gauges.ns, p,np,nd- andnd (n17) numerical basis functions have been used for the construction of CSF's entering the CI expansion for the ASF's of these levels. Radiative matrix elements of the type calculated here within the framework of the relativistic CI method, may be used in laser assisted spectroscopic studies of atoms and ions.  相似文献   

4.
In a dissociation attachment experiment of water, three peaks were observed at 7,9, and 12 eV. The origin of the third peak has been believed to be 2B2. However, the calculated energy of this state is 0.6 eV higher than the experimental value. This discrepancy is quite large compared with the case of the lower two peaks. In this study we propose new candidates for resonant states responsible for the third peak. The configurations considered are (3a1)?1(3pa1)2, (3a1)?1(3pb1)2, (3a1)?1(3pb2)2, (3a1)?1(3pa1)1(3pb1)1, (3a1)?1(3pb2)1(3pa1)1, and (3a1)?1(3pb2)1(3pb1)1 which have the parent state (3a1)?1(3pa1)1, (3a1)?1(3pb1)1, or (3a1)?1(3pb2)1. The energy levels arising from these configurations are calculated by a method of configuration interaction. A Few resonance states, which could be responsible for the third peak, are found. New decay process of these states are proposed.  相似文献   

5.
An entirely new class of heterobimetallic homoleptic glycolate complexes of the type Nb(OGO)3{Ta(OGO)2} [where G=CMe2CH2CH2CMe2 (G1) (3); CMe2CH2 CHMe(G2) (4); CHMeCHMe (G3) (5); CH2CMe2CH2 (G4) (6); CMe2CMe2(G5) (7); CH2CHMeCH2 (G6) (8); CH2CEt2CH2 (G7) (9); CH2CMe(Prn)CH2 (G8) (10)] have been prepared by the reactions of Nb(OGO)2(OGOH) [G=G1 (1a); G2 (1b); G3 (1c); G4 (1d); G5 (1e); G6 (1f); G7 (1g); G8 (1h)] with Ta(OGO)2 (OPri) (G=G1 (2a); G2 (2b); G3 (2c); G4 (2d); G5 (2e) G6 (2f); G7 (2g); G8 (2h). In addition to the novel derivatives (2)(10), our earlier investigations on heterobimetallic glycolate-alkoxide derivatives have been extended to derivatives of the type Nb(OGO) [where M=A1 n=3, G=G3 (11);G4 (12); G6 (13) G7 (14); Gs (15); G9=CH2CH2CH2 (16) and M=Ti (n=4, G=G4) (17), Zr(n=4,G=G4) (18)], which are conveniently prepared by the reactions of metalloligands Nb(OGO)2(OGOH) [G=G3 (1c); G4 (1d); G6 (1f); G7 (1g); G8 (1h); G9 (1i)] with different metal alkoxides. All of these new complexes have been characterized by elemental analyses, molecular weight determinations, and spectroscopic (I.r. and 1H, 27Al-n.m.r.) studies. Structural features of the new derivatives have been elucidated on the basis of molecular weight and spectroscopic data.  相似文献   

6.
This article reports new square‐planar Fe(CO)4 D4h structures that are optimized, using the Hartree–Fock (HF) approach, and multiconfiguration self‐consistent field (MCSCF) theory in active space [2b2g2ega1ga2u]8, and which energy increased in sequence: 3B2g TS < 1A1g TS < 1A1g GS. A triple ζ valence basis set supplemented with 4f for Fe and 3d for C and O polarization shells [TZV (DF)] was used. At the HF/TZV (DF) level, 1A1g TS and 3B2g TS (3B2g TS energetically more favorable), there are transition states of tetrahedral inversion (defining stereochemical flexibility of Fe(CO)4) between known equivalent 1A1 and 3B2 Jahn–Teller distorted tetrahedron C2v structures with activation energy at ~0.96 kcal/mol according to the experimental data. 1A1g TS differs from 1A1g GS in electronic configuration by occupation of a1g and a2u MOs. At the MCSCF/ TZV (DF) level, 1A1g TS and 1A1g GS are optimized as near‐pure states in different potential energy surfaces (PES) avoided conical intersection with near‐equal interatomic distances, and define electronic flexibility of Fe(CO)4. Estimation of the energy separation in a two‐level system that avoids a conical intersection from vibrational spectrum is based on the effective Hamiltonian of the perturbation theory. The energy gap between two square‐planar Fe(CO)4 D4h 1A1g TS < 1A1g GS is 0.27 kcal/mol. The energy gap between 1A1g GS and 1A1 is 1.28 kcal/mol. It is possible to observe 3B2, 1A1 and 1A1g GS separately in the course of the experiment. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

8.
Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)‐iPr‐Pybox (2,6‐bis[4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine) and (SRSR/RSRS)‐Ind‐Pybox (2,6‐bis[8H‐indeno[1,2‐d]oxazolin‐2‐yl]pyridine), have been combined with lanthanide ions (Gd3+, Nd3+) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN?‐bridged coordination chains: {[LnIII(SS/RRiPr‐Pybox)(dmf)4]3[WV(CN)8]3}n ? dmf ? 4 H2O (Ln=Gd, 1 ‐SS and 1 ‐RR; Ln=Nd, 2 ‐SS and 2 ‐RR) and {[LnIII(SRSR/RSRS‐Ind‐Pybox)(dmf)4][WV(CN)8]}n ? 5 MeCN ? 4 MeOH (Ln=Gd, 3 ‐SRSR and 3 ‐RSRS; Ln=Nd, 4 ‐SRSR and 4 ‐RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200–450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the GdIII‐WV chains show dominant ligand‐based red phosphorescence, with λmax≈660 nm for 1 ‐(SS/RR) and 680 nm for 3 ‐(SRSR/RSRS). The NdIII‐WV chains, 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS), exhibit near‐infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra‐f 4F3/24I9/2,11/2,13/2 transitions of the NdIII centers. This emission is realized through efficient ligand‐to‐metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [WV(CN)8]3? moieties connected by cyanide bridges, 1 ‐(SS/RR) and 3 ‐(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between GdIII (SGd=7/2) and WV (SW=1/2) centers with J 1 ‐(SS)=?0.96(1) cm?1, J 1 ‐(RR)=?0.95(1) cm?1, J 3 ‐(SRSR)=?0.91(1) cm?1, and J 3 ‐(RSRS)=?0.94(1) cm?1. 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS) display ferromagnetic coupling within their NdIII‐NC‐WV linkages.  相似文献   

9.
Sharpless epoxidation of (E)-1-(trimethylsilyl)[1-2H1]oct-1-en-3-o1 ( 3a ) yielded (1S,2S,3S)- and (1R,2R,3R)-1-(trimethylsilyl)-1,2-epoxy[1-2H1]octan-3-ols ( 4a and 4b , resp.) which were converted in three steps into (S)- and (R)-fluoro[ 2H1]acetic acid ( 7a and 7b , resp.) in good yields. Their high isotopic and optical purity was established by 1H- and 19F-NMR, mass, and circular-dichroism spectroscopy.  相似文献   

10.
A one‐pot template condensation of 2‐(2‐(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H2L1, 1 ) or 2‐(2‐(dicyanomethylene)hydrazinyl)benzoic acid (H2L2, 2 ) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H2O)2O1N2 L1a] ( 3 ) and [Cu(H2O)(κO1N3 L1b)] ( 4 ), tetranuclear [Cu4(1 κO1N2:2 κO1 L2a)3‐(1 κO1, κN2:2 κO2 L2a)] ( 5 ), [Cu2(H2O)(1 κO1, κN2:2 κO1 L2c)‐(1 κO1,1 κN2:2 κO1,2 κN1‐ L2c)]2 ( 6 ) and [Cu2(H2O)2O1N2‐ L1dd)‐(1 κO1N2:2 κO1 L1dd)(μ‐H2O)]2 ? 2 H2O ( 7? 2 H2O), as well as polymer‐ ic [Cu(H2O)(κO1,1 κN2:2 κN1 L1c)]n ( 8 ) and [Cu(NH2C2H5)(κO1,1 κN2:2 κN1L2a)]n ( 9 ). The ligands 2‐SO3H‐C6H4‐(NH)N?C{(CN)[C(NH2)‐(?NCH2CH2NH2)]} (H2L1b, 10 ), 2‐CO2H‐C6H4‐(NH)N?{C(CN)[C(OCH3)‐(?NH)]} (H2L2a, 11 ) and 2‐SO3H‐C6H4‐(NH)N?C{C(?O)‐(NH2)}2 (H2L1dd, 12 ) were easily liberated upon respective treatment of 4 , 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2‐(SO3?)? C6H4? N?NC(? C?(NH+)CH2CH2NH)(?CNHCH2CH2NH) ( 13 ) was observed when 1 was treated with ethylenediamine. The hydrogen bond‐induced E/Z isomerization of the (HL1d)? ligand occurs upon conversion of [{Na(H2O)2(μ‐H2O)2}(HL1d)]n ( 14 ) to [Cu(H2O)6][HL1d]2 ? 2 H2O ( 15 ) and [{CuNa(H2O)‐(κN1,1 κO2:2 κO1 L1d)2}K0.5(μ‐O)2]n ? H2O ( 16 ). The synthesized complexes 3 – 9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80–99 %.  相似文献   

11.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

12.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

13.
A new series of cationic heterodinuclear complexes, [M1M2Cl2(meso-dpmppp)(RNC)2]PF6 (M1=Ni, M2=Rh, R=tBu ( 1 a ); M1=Pd, M2=Rh, R=tBu ( 2 a ), Xyl ( 2 b ); M1=Pt, M2=Rh, R=tBu ( 3 a ), Xyl ( 3 b ); M1=Pd, M2=Ir, R=tBu ( 4 a )), supported by a tetradentate phosphine ligand, meso-Ph2PCH2P(Ph)(CH2)3P(Ph)CH2PPh2 (meso-dpmppp), were synthesized by stepwise reactions of meso-dpmppp with NiCl2 ⋅ 6H2O or MCl2(cod) (M=Pd, Pt), forming mononuclear metalloligands of [M1Cl2(meso-dpmppp)], and with [M2Cl(cod)]2 (M2=Rh, Ir) and RNC (R=tBu, Xyl) in the presence of [NH4][PF6]. The related neutral PdRh complex, [PdRhCl3(meso-dpmppp)(XylNC)] ( 5 ), was also prepared. The structures of 1 – 5 were determined by X-ray analyses to contain two square planar d8 metal centers with face-to-face arrangement, where meso-dpmppp supports M1 and M2 metal ions in cis/trans-P,P coordination mode, combining cis-{M1P2Cl2} and trans-{M2P2(CNR)2} units. Complexes 1 – 4 showed an intence characteristic absorption around 422–464 nm derived from RhI→RNC MLCT transition (HOMO→LUMO+1), which are influenced by changing M1 (NiII, PdII, PtII) metal ions since HOMO composed of dσ* orbitals appreciably destabilized by changing M1 from Ni to Pd, and Pt. The electronic structures of 1 a – 4 a were investigated on the basis of DFT calculations and NBO analyses to show weak but noticeable d8–d8 metallophilic interaction as empirical dispersion energy of 0.9–1.5 kcal/mol without M1–M2 covalent bonding interaction. In addition, 1 – 5 were utilized as catalysts for hydrosilylation of styrene, and the NiRh complex 1 a was found to show higher activity and chemo- and regioselectivity compared with 2 – 5 .  相似文献   

14.
All four stereoisomers of (E)-vitamin Kb i. e. (21E, 7R, 111R)-l (= 1a), (21E, 71 R, l11S)-1 (= 1b), (21E, 71 S, 111S) 1 ( = 1c), and (21E, 71S, 111R)-l ( = Id), have been synthesized in a state of high chemical and stereoisomeric purity. The synthesis of stereoisomers lb-d relied on the use of the optically active Cf1* and C*10-building blocks (R)- or (S)-4-(benzyloxy)-3-methylbutanal ((R)- or (S)-2) and (R)- or (S)-citronellal ((R)- or (S)- 3 ) which had been secured by the Rh1-catalyzed allylamine-to-enamine isomerization technology. For the synthesis of the natural (E)-vitamin-K1 stereoisomer 1a , a new route starting from natural phylol was developed, based on an O-alkylation/rearrangement procedure. A HPLC method was developed which separates with remarkable efficiency all four stereoisomers of (E)- as well as three out of the four stereoisomers of (Z)-vitamin K1 on optically active poly(trityl methacrylate) as the chiral stationary phase supported on Nucleosil. By this method, the stereoisomeric content of the stereoisomers 1b-d synthesized was shown to be in the range of 96-98 %, while the natural isomer 1a was configurationally uniform. The biological activity of the four (E)-vitamin-K1 stereoisomers was determined by means of the curative prothrombin time test with vitamin-K-depleted chicks. A high precision of the results was obtained with the recently introduced up-and-down organization of the test and the statistical evaluation according to an estimation procedure. With the natural (E)-vitamin-K1 stereoisomer 1a as standard (set at 1. 0), activities of 0. 93, 1. 19, and 0. 99 were found for stereoisomers 1b, 1c , and 1d , respectively. Within the confidence limits, these activity ratios can be regarded as identical, A very similar efficacy was obtained by comparison of (E, all-rac )-vitamin K1 ((21E, RS, 11′ RS)- 1 ; equimolar mixture of the four stereoisomers 1a-d) with the natural (E)-vitamin-K1 stereoisomer 1a ). A synergistic effect was not detectable, as was the case with the eight α-tocopheryl-acetate stereoisomers.  相似文献   

15.
Abstract

The EPR spectra of single crystals of 63Cu(II) doped N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(sal)2en] and 7-methyl-N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(7-me sal)2en] have been studied. The usual doublet spin-Hamiltonian parameters for the complexes have been found to be: Cu(II)[(sal)2en]; g z =2.192 ± 0.002; g x =2.046 ± 0.004; g y =2.049 ± 0.004; A z =201.0 × 10?4 cm?1; A x =29.3 × 10?4 cm?1; A y =31.3 × 10?4 cm?1; AN z =12.6 × 10?4 cm?1; A N x =14.5 × 10?4 cm?1; A N y =15.7 × 10?4 cm?1; A H z =6.3 × 10?4 cm?1; A H x =7.3 × 10?4 cm?1; A H y =7.9 × 10?4 cm?1; Cu(II)[(7-me sal)2en]; g z =2.189 ± 0.002; g x =2.037 ± 0.004; g y =2.046 ± 0.004; A z =203.0 × 10?4 cm?1; A x =36.9 × 10?4 cm?1; A y =22.7 × 10?4 cm?1; A N z =12.6 × 10?4 cm?1; A N x =13.3 × 10?4 cm?1; A N y =14.0 × 10?4 cm?1. Values of molecular orbital coefficients calculated for these complexes show that their bonding properties are similar to those of other compounds of this type. There is considerable covalency in the metal-ligand [sgrave]-bonds, and significant in-plane pi-bonding is present.  相似文献   

16.
UV/Vis and NMR spectroscopy were used for the structural elucidation and thermodynamic and photochemical studies of the metal‐coordinated crown‐containing macrocyclic tweezer (E,E)‐ 1 . The bis(styryl) tweezer (E,E)‐ 1 formed two types of complexes with magnesium(II): a 1:1 intramolecular asymmetric sandwich complex [(E,E)‐ 1 ]?Mg2+ and a 1:2 complex [(E,E)‐ 1 ]?(Mg2+)2. In the former case, there is direct cation intramolecular exchange (0.299 s?1, ΔG=69.4 kJ mol?1) between two parts of the bis(styryl) tweezer (E,E)‐ 1 . Addition of barium(II) to the bis(styryl) tweezer (E,E)‐ 1 led to an intramolecular centrosymmetric sandwich 1:1 complex [(E,E)‐ 1 ]?Ba2+. Irradiation of [(E,E)‐ 1 ]?Ba2+ afforded reversible intramolecular [2π+2π] photocyclization with excellent stereoselectivity and quantitative yield. In contrast, irradiation of [(E,E)‐ 1 ]?(Mg2+)2 resulted in reversible stepwise E,Z‐isomerization.  相似文献   

17.
Diagrammatic many-body perturbation theory is used to calculate the potential energy function for the X1 σ+ state of the CO molecule near the equilibrium nuclear configuration. Spectroscopic constants are derived from a number of curves which are obtained from calculations taken through third order in the energy. By forming [2/1] Padé approximants to the constants we obtain: re = 1.125 Å (1.128 Å), Be = 1.943 cm?1 (1.9312 cm?1), aBe = 0.0156 cm?1 (0.0175 cm?1), We = 2247 cm?1 (2170 cm?1), WeXe = 12.16 cm?1 (13.29 cm?1), where the experimental values are given in parenthesis.  相似文献   

18.
The β‐pyranose isomer of D ‐galactosylamine ( 1 ) formed complexes with three different cobalt(III) fragments. Crystals containing the dication [Co(tren)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 3 ) showed coordination through the anomeric amino group (N1) and the deprotonated hydroxy group (O2) of the 4C1 β‐pyranose form, which is also the major isomer of free galactosylamine. The cationic complexes [Co(fac‐dien)(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 4 ) and [Co(phen)2(β‐D ‐Galp1N2H–1‐κ2N1,O2)]2+ ( 5 ) were analysed by NMR spectroscopy and showed the same coordination mode as 3 . In terms of available ligand isomers it was shown that 1 exhibits an anomeric equilibrium in solution of both pyranose and both furanose forms as is typical for the parent glycose, galactose.  相似文献   

19.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

20.
After single electron reduction of the dinitrogen complex [LtBuNi(μ‐η11‐N2)NiLtBu] ( I ) with KC8, reaction of the resulting compound K[LtBuNi(μ‐η11‐N2)NiLtBu] ( II ) with sodium sand yields KNa[LtBuNi(μ‐η11‐N2)NiLtBu] ( 1 ), which contains two different alkali metal ions. Treatment of I with two equivalents of sodium sand leads to the symmetric complex Na2[LtBuNi(μ‐η11‐N2)NiLtBu] ( 2 ). Complexes 1 and 2 were investigated by single crystal X‐ray diffraction analysis as well as by Raman spectroscopy, and the results were compared with the data of K2[LtBuNi(μ‐η11‐N2)NiLtBu] ( III ), which contains two K+ ions. Thus, it became obvious that the nature of the alkali metal ion M in compounds M2[LtBuNi(μ‐η11‐N2)NiLtBu] has hardly any influence on the degree of NN bond activation. Furthermore, it was shown that treatment of the dinickel(I) complex III with CO leads to the dinickel(0) compound K2[LtBuNi(CO)]2 ( 4 ) and N2. Reaction of the unreduced dinickel(I) complex I with CO leads to a more simple replacement of the N2 ligand and formation of [LtBuNi(CO)] ( 3 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号