首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

2.
Preparation and Crystal Structure of the Azavinylidene Derivative Cp*2Ti(CH=CH2)(N=CPh2) derived from the Thermally Generated Titanaallene Intermediate [Cp*2Ti=C=CH2] The title complex 4 was synthesized by reaction of Benzophenonimin with the titanaallene fragment [Cp*2Ti=C=CH2] ( 3 ). Complex 4 was characterized by 1H and 13C NMR spectra and by X-ray structure analysis, respectively.  相似文献   

3.
We report the synthesis of some heterobimetallic carbonyl clusters of groups 8 and 9 derived from diethynylsilane and diethynyldisilane ligands. The triosmium carbonyl clusters containing a pendant acetylene unit [(μ-CO)Os3(CO)932-HC≡C-E-C≡CH)] [E = Si(CH3)2, Si(CH3)2–Si(CH3)2 and SiPh2] were prepared and subsequently used for mixed-metal cluster formation. New diyne complexes of the type [{(μ-CO)Os3(CO)9}{Co2(CO)6}(μ322-diyne)] and [{(μ-CO)Os3(CO)9}{(μ-H)Ru3(CO)9}(μ3232, η2-diyne)] [diyne = HC≡CSi(CH3)2C≡CH, HC≡CSi(CH3)2–Si(CH3)2C≡CH or HC≡CSi(Ph)2C≡CH] have been prepared in good yields from the reaction of [(μ-CO)Os3(CO)932-HC≡C-E-C≡CH)] with a molar equivalent of [Co2(CO)8] and [Ru3(CO)12], respectively. All the new heterobimetallic compounds have been characterized by IR and 1H NMR spectroscopy and mass spectrometry. The X-ray crystal structures and computational analyses based on density functional theory of these three molecules have been studied. Structurally, the dicobalt species adopts a pseudo-tetrahedral Co2C2 core with the alkyne bond which lies essentially perpendicular to the Co–Co vector. For the mixed osmium–ruthenium analogue, the hexanuclear carbonyl cluster consist of two trinuclear metal cores with the μ3-(η2-||) bonding mode for the acetylene group in the former case and the μ32, η2 bonding mode in the latter one.  相似文献   

4.
The reactions of the Group 4 metallocene dichlorides [Cp′2MCl2] ( 1 a : M=Ti, Cp′=Cp*=η5‐pentamethylcyclopentadienyl, 1 b : M=Zr, Cp′=Cp=η5‐cyclopentadienyl) with lithiated MesCH2?C?N gave [Cp*2TiCl(N=C=C(HMes))] ( 3 ; Mes=mesityl) in the case of 1 a . For compound 1 b , a nitrile–nitrile coupling resulted in a five‐membered bridge in 4 . The reaction of the metallocene alkyne complex [Cp*2Zr(η2‐Me3SiC2SiMe3)] ( 2 ) with PhCH2?C?N led in the first step to the unstable product [Cp*2Zr(η2‐Me3SiC2SiMe3)(NC?CH2Ph)] ( 5 ). After the elimination of the alkyne, a mixture of products was formed. By variation of the solvent and the reaction temperature, three compounds were isolated: a diazadiene complex 6 , a bis(keteniminate) complex 7 , and 8 with a keteniminate ligand and a five‐membered metallacycle. Subsequent variation of the Cp ligand and the metal center by using [Cp2Zr] and [Cp*2Ti] with Me3SiC2SiMe3 in the reactions with PhCH2?C?N gave complex mixtures.  相似文献   

5.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

6.
The use of diethynylsilane, diethynyldisilane and diethynyldisiloxane in the synthesis of some linked metal carbonyl clusters is demonstrated. New dimeric η2-diyne complexes of cobalt [{Co2(CO)6}22-diyne)], ruthenium [{(μ-H)Ru3(CO)9}2322-diyne)] and osmium [{(μ-CO)Os3(CO)9}232-diyne)] {diyne=HC≡CSi(CH3)2C≡CH, HC≡CSi(CH3)2–Si(CH3)2C≡CH, HC≡CSi(CH3)2–O–Si(CH3)2C≡CH or HC≡CSi(Ph)2C≡CH} have been prepared in good yields from the reaction of [Co2(CO)8], [Ru3(CO)12] and [Os3(CO)10(NCMe)2] with half an equivalent of the appropriate diyne ligand, respectively. All the twelve compounds have been characterized by IR and 1H NMR spectroscopies and mass spectrometry. The molecular structures of eight of them have been determined by X-ray crystallography. Structurally, each of the tetracobalt species displays two Co2C2 cores adopting the pseudo-tetrahedral geometry with the alkyne bond lying essentially perpendicular to the Co–Co vector. For the group 8 ruthenium and osmium analogues, the hexanuclear carbonyl clusters consist of two trinuclear metal cores with the μ322 bonding mode for the acetylene groups in the former case and μ3-(η2-||) bonding mode in the latter one. Density functional theory was employed to study the electronic structures of these molecules in terms of the nature of the silyl or disilyl unit and its substituents.  相似文献   

7.
Synthesis and Properties of Pentamethylcyclopentadienylsubstituted PPC and AsPC three-membered Rings Via the reaction of bis-(pentamethylcyclopentadienyl)diphosphene [Cp*P?PCp*, 1 ] and 1-(pentamethylcyclopentadienyl)-2-(2,4,6-tritbutylphenyl)- diphosphene [Cp*P?PMes*, 2 ] with the diazomethanes N2CHR [R = H, Si(CH3)3] the four new diphosphiranes Cp*PPCp*CHSi(CH3)3, 4a , Cp*PPMes*CHSi(CH3)3, 4b , Cp*PPCp*CH2, 5a , Cp*PPMes*CH2, 5b , are obtained. The formation of 4a results via a 2 + 3-cyclo-addition product, which could be proved by nmr spectroscopy. The reaction of As-(pentamenthylcyclopentadienyl)-P-(2,4,6-tritbutylphenyl) arsaphosphene [Cp*As?PMes*, 3 ] with diazomethane leads to 1-(pentamethylcyclopentadienyl)-2-(2,4,6-tritbutylphenyl)-1-arsa-2 -phosphacyclopropane [phospharsiran, Cp*AsPMes*CH2, 6 ]. Analysis of the structures by nmr spectroscopy gives clear evidence for a trans-orientation of the substituents at the El? P bond (El = As, P) in all of the three membered ring systems. For the diphosphirane Cp*PPCp*CH2 ( 5a ) a Cp*-phosphorus bond cleavage by thermolysis cannot be observed. From the reaction of compound 5a with Cr(CO)5thf one obtains 1-(pentacarbonylchrom)-1,2-bis(pentamethylcyclopentadienyl)-1,2- diphosphacyclo-propane, 7 .  相似文献   

8.
Cyclopentadienyl–ruthenium half‐sandwich complexes with η2‐bound alkyne ligands have been suggested as catalytic intermediates in the early stages of Ru‐catalyzed reactions with alkynes. We show that electronically unsaturated complexes of the formula [RuCl(Cp^)(η2‐RC≡CR′)] can be stabilized and crystallized by using the sterically demanding cyclopentadienyl ligand Cp^ (Cp^=η5‐1‐methoxy‐2,4‐tert‐butyl‐3‐neopentyl‐cyclopentadienyl). Furthermore we demonstrate that [RuCl2(Cp^)]2 is an active and regioselective catalyst for the [2+2+2] cyclotrimerization of alkynes. The first elementary steps of the reaction of mono(η2‐alkyne) complexes containing {RuCl(Cp*)} (Cp*=η5‐C5Me5) and {RuCl(Cp^)} fragments with alkynes were investigated by DFT calculations at the M06/6‐31G* level in combination with a continuum solvent model. Theoretical results are able to rationalize and complement the experimental findings. The presence of the sterically demanding Cp^ ligand increases the activation energy required for the formation of the corresponding di(η2‐alkyne) complexes, enhancing the initial regioselectivity, but avoiding the evolution of the system towards the expected cyclotrimerization product when bulky substituents are present. Theoretical results also show that the electronic structure and stability of a metallacyclic intermediate is strongly dependent on the nature of the substituents present in the alkyne.  相似文献   

9.
By the reaction of [Cp*Fe(η5-As5)] ( I ) (Cp*=C5Me5) with main group nucleophiles, unique functionalized products with η4-coordinated polyarsenide (Asn) units (n=5, 6, 20) are obtained. With carbon-based nucleophiles such as MeLi or KBn (Bn=CH2Ph), the anionic organo-substituted polyarsenide complexes, [Li(2.2.2-cryptand)][Cp*Fe(η4-As5Me)] ( 1 a ) and [K(2.2.2-cryptand)][Cp*Fe{η4-As5(CH2Ph)}] ( 1 b ), are accessible. The use of KAsPh2 leads to a selective and controlled extension of the As5 unit and the formation of the monoanionic compound [K(2.2.2-cryptand][Cp*Fe(η4-As6Ph2)] ( 2 ). When I is reacted with [M]As(SiMe3)2 (M=Li ⋅ THF; K), the formation of the largest known anionic polyarsenide unit in [M′(2.2.2-cryptand)]2[(Cp*Fe)45443311-As20}] ( 3 ) occurred (M′=Li ( 3 a ), K ( 3 b )).  相似文献   

10.
Recently published reactions of group 4 metallocene bis(trimethylsilyl)acetylene (btmsa) complexes from the last two years are reviewed. Complexes like Cp’2Ti(η2-Me3SiC2SiMe3) and Cp2Zr(py)(η2-Me3SiC2SiMe3) with Cp’ as Cp (cyclopentadienyl) and Cp* (pentamethylcyclopentadienyl) have been considered (py=pyridine). These complexes can liberate a reactive low-valent titanium or zirconium center by dissociation of the ligands and act as ‘‘masked’’ MII complexes (M=Ti, Zr). They represent excellent sources for the clean generation of the reactive coordinatively and electronically unsaturated complex fragments [Cp’2M]. This is the reason why they were used for many synthetic and catalytic reactions during the last years. As an update to several review articles on this topic, this contribution provides an update with recent examples of preparative organometallic and organic chemistry of these complexes, acting as reagents for a wide range of coordinating and coupling reactions. In addition, applications and investigations concerning reaction products derived from this chemistry are mentioned, too.  相似文献   

11.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

12.
A novel catalyst precursor, (η5‐pentamethylcyclopentadienyl)titanium triallyloxide (Cp*Ti(OCH2—CH=CH2)3), was prepared and employed in a study of propylene polymerization in the presence of methylaluminoxane (MAO). This work has revealed that the half‐titanocene catalyst is desirable for the production of elastomeric poly(propylene) with high molecular weight (Mw = 8–69×104) as well as in good yields under typical polymerization conditions.  相似文献   

13.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with diphenyldiazomethane leads to [{W(CO)5}Cp*P=NN{W(CO)5}=CPh2] ( 2 ). Compound 2 is a rare example of a phosphadiazadiene ligand (R‐P=N?N=CR′R′′) complex. At temperatures above 0 °C, 2 decomposes into the complex [{W(CO)5}PCp*{N(H)N=CPh2)2] ( 3 ), among other species. The reaction of the pentelidene complexes [Cp*E{W(CO)5}2] (E=P, As) with diazomethane (CH2NN) proceeds differently. For the arsinidene complex ( 1 b ), only the arsaalkene complex 4 b [{W(CO)5}21:2‐(Cp*)As=CH2}] is formed. The reaction with the phosphinidene complex ( 1 a ) results in three products, the two phosphaalkene complexes [{W(CO)5}21:2‐(R)P=CH2}] ( 4 a : R=Cp*, 5 : R=H) and the triazaphosphole derivative [{W(CO)5}P(Cp*)‐CH2‐N{W(CO)5}=N‐N(N=CH2)] ( 6 a ). The phosphaalkene complex ( 4 a ) and the arsaalkene complex ( 4 b ) are not stable at room temperature and decompose to the complexes [{W(CO)5}4(CH2=E?E=CH2)] ( 7 a : E=P, 7 b : E=As), which are the first examples of complexes with parent 2,3‐diphospha‐1,3‐butadiene and 2,3‐diarsa‐1,3‐butadiene ligands.  相似文献   

15.
The redox chemistry of [Cp*Fe(η5-As5)] ( 1 , Cp*=η5-C5Me5) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η5-P5)]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel Asn scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme)2][{Cp*Fe(μ,η2:2-As2)}2] ( 2 ) and the arsenic-rich complexes [K(dme)3]2[(Cp*Fe)2(μ,η4:4-As10)] ( 3 ), [K(dme)2]2[(Cp*Fe)2(μ,η2:2:2:2-As14)] ( 4 ), and [K(dme)3]2[(Cp*Fe)444:3:3:2:2:1:1-As18)] ( 5 ). Compound 4 and the polyarsenide complex 5 are the largest anionic Asn ligand complexes reported thus far. Complexes 2 – 5 were characterized by single-crystal X-ray diffraction, 1H NMR spectroscopy, EPR spectroscopy ( 2 ), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η5-As5)], which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe)2(μ,η4:4-As10)]2−.  相似文献   

16.
Desactivation of Catalysts in the Polymerization of Acetylene by Bis(trimethylsilyl)acetylene Complexes of Titanocene or Zirconocene Unexpected inactive byproducts were observed in the catalytic polymerization of acetylene using metallocene alkyne complexes Cp2M(L)(η2-Me3SiC2SiMe3), 1 : M = Ti, without L; 2 : M = Zr, L = thf. The reaction of 1 was investigated in detail by NMR to give quantitatively at –20 °C the titanacyclopentadiene Cp2Ti–CH=CH–C(SiMe3)=C(SiMe3) ( 3 ). Around 0 °C 3 starts to rearrange to yield the dihydroindenyl complex 4 via coupling of one Cp-ligand with the titanacyclopentadiene. In the reaction of 2 under analogous conditions a zirconacyclopentadiene Cp2Zr–CH=CH–C(SiMe3)=C(SiMe3) ( 5 ) and the dimeric complex [Cp2Zr(C(SiMe3)=CH(SiMe3)]2[μ-σ(1,2)-C≡C] ( 6 ) were observed. Whereas 5 decomposes to a mixture of unidentified paramagnetic species, 6 was isolated and investigated by NMR spectroscopy and X-ray analysis. In the reaction of rac-(ebthi)Zr(η2-Me3SiC2SiMe3) (ebthi = ethylenbistetrahydroindenyl) with 2-ethynyl-pyridine the complex rac-(ebthi)ZrC(SiMe3)=CH(SiMe3)](σ-C≡CPy) 7 was obtained, which was investigated by an X-ray analysis.  相似文献   

17.
A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5-P5)] (Cp*=C5Me5) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(DippBDI−Mg(CH3))2] (DippBDI={[2,6-iPr2C6H3NCMe]2CH}) reacts with [Cp*Fe(η5-P5)] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5-P5)] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5-P5)]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5-P5)]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7)3− was obtained by molecular calcium hydride mediated P4 reduction.  相似文献   

18.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

19.
Diphenyl diselenide reacts with [CpRh(CO)2] ( 1 ) to give the dimer [CpRh(SePh)(μ-SePh)]2 ( 2 ), the solid state structure of which has been determined by X-ray analysis; the dimeric structure is retained in solution. In contrast, [Cp*Rh(CO)2] ( 4 ) gives the ionic product [Cp*Rh(μ-SePh)3RhCp*][Cp*Rh(SePh)3] ( 5 ), which dissolves as such in THF but as a monomeric 16-electron complex [Cp*Rh(SePh)2] ( 6 ) in CDCl3 or CD2Cl2. Upon UV irradiation in CDCl3, ( 2 ) is converted into the ionic species [CpRh(μ-SePh)3RhCp]Cl ( 3 ). The monomer ( 6 ) slowly decomposes in CH2Cl2, and single crystals of [Cp*Rh(μ-SePh)3RhCp*][PhSeCl2] ( 5 a ) have been obtained. The crystal structure of 5 a has been determined by X-ray diffraction methods. The structures in solution were proposed in particular on the basis of 77Se NMR spectroscopy where the splitting due to 103Rh–77Se coupling makes it possible to distinguish between bridging and terminal PhSe groups.  相似文献   

20.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号