首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

A series of complexes of formula [(NC)5FeII—NC—FeII(CN)4L]n?, with L = H2O, pyridine, isonicotinamide and 4-cyanopyridine were prepared in aqueous solution by substitution of the corresponding [FeII(CN)5L]n? ions into [FeII(CN)5H2O]3?. The mixed valent (II, III) and fully oxidized (III, III) complexes were also obtained. The (II, II) complexes were moderately stable toward dissociation into the mononuclear species, but the mixed-valent ions were properly characterized by UV-vis-NIR spectroscopy and electrochemistry. Distinctive intervalence (IV) bands were assigned in the NIR region, with the energy being dependent on the binding properties of L; the IV band energy also correlated with the redox potential at the [NC—Fe(CN)4L] fragment. By application of the Hush model, a valence-trapped situation was found for the [(NC)5FeIII—NC—FeII(CN)4L]n? ions. The class II behavior shows, however, a value of H ab, the electronic coupling factor, of ca. 1600cm?1, indicating a moderate-to-strong communication between the metal centers.  相似文献   

2.
The synthesis and characterization of the first two Re complexes with semicarbazone ligands is presented. Selected ligands are 5‐Nitro‐2‐furaldehyde semicarbazone (Nitrofurazone) ( L1 ) and its derivative 3‐(5‐Nitrofuryl)acroleine semicarbazone ( L2 ). Complexes of general formula [ReVOCl2(PPh3) L ], where L = L1 and L2 , were prepared in good yields and high purity by reaction of [ReVOCl3(PPh3)2] with L in ethanol or methanol solutions. The complexes formula and molecular structures were supported by elemental analyses and electronic, FTIR, 1H, 13C and 31P NMR spectroscopies. In addition, the crystal and molecular structure of [ReVOCl2(PPh3) L2 ] was determined by X‐ray diffraction methods. [ReOCl2(PPh3)(3‐(5‐Nitrofuryl)acroleine semicarbazone)] crystallizes in the space group P‐1 with a = 11.2334(2), b = 11.3040(2), c = 12.5040(2) Å, α = 81.861(1), β = 63.555(1), γ = 83.626(1)°, and Z = 2. The Re(V) ion is in a distorted octahedral environment, equatorially coordinated to a deprotonated semicarbazone molecule acting as a bidentate ligand through its carbonylic oxygen and azomethynic nitrogen atoms, to an oxo ligand and a chlorine atom. The six‐fold coordination is completed by another chlorine atom and a triphenylphosphine ligand at the axial positions.  相似文献   

3.
The stoichiometry of thermal decomposition and the thermochemistry were studied for [NiL4(NCS)2] (I) as a host complex, and for its clathrates of type [NiL4(NCS)2]·2G, where L=4-ethylpyridine and guest molecule G=1-methylnaphthalene in clathrate (II), 1-chloronaphthalene in (III) or 1-bromonaphthalene in (IV). For I, the loss of volatile components proceeds in three steps (–2L, –L, –L); the first steps for II–IV also involve the release of G (–2G, –2L). DSC and X-ray powder measurements indicated a phase transition in the host lattice, and allowed differentiation of the escape of G and L molecules. The enthalpy changes give the following sequence of thermodynamic stability for the studied chlathrates: I>II>III.  相似文献   

4.
Metal Complexes of Biologically Important Ligands. CXXVI. Palladium(II) and Platinum(II) Complexes with the Antimalarial Drug Mefloquine as Ligand The coordination sites of the antimalarial drug mefloquine (L) were studied. Reactions of the chloro bridged complexes (allyl)Pd(μ‐Cl)2Pd(allyl) and (R3P)(Cl)M(μ‐Cl)2M(Cl)(PR3) (M = Pd, Pt) with racemic mefloquine give the compounds (allyl)(Cl)Pd(L) ( 1 ), Cl2(Et3P)Pt(L) ( 2 ) and Cl2(Et3P)Pd(L) ( 3 ) with coordination of the piperidine N atom of mefloquine. In the presence of NaOMe the N,O‐chelate complexes Cl(Et3P)Pt(L–H+) ( 4 ) and Cl(R3P)Pd(L–H+) ( 5 , 6 , R = Et, nBu) were obtained. Protection of the piperidine N atom of mefloquine by protonation allows the synthesis of the complexes Cl2(Et3P)Pt(L + H+) ( 7 ) in which mefloquine is coordinated via the quinoline N atom. The structures of 2 , 3 and 4 were determined by X‐ray diffraction analysis. In the crystal of 4 pairs of enantiomers are found which are linked by two hydrogen bridges between the amine group and the chloro ligand.  相似文献   

5.
The manganese carbonyl complex [MnBr(CO)3 L ] ( 1 ), where L = Ph2POCH2CH2OPPh2, was prepared by reacting [MnBr(CO)5] with the bidentate ligand 1, 2‐Bis(diphenylphosphinite)ethane. From this compound and the appropriate phosphite, phosphinite or phosphonite ligands were synthesized the complexes [MnBr(CO)2 LL ′], where L ′ = P(OMe)3 ( 2 ) or P(OEt)3 ( 3 ) and [MnBr(CO)3 L ′2], where L ′ =PPh(OEt)2 ( 4 ) or PPh2(OEt) ( 5 ). The obtained compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR (1H, 13C and 31P) spectroscopies and X‐ray diffractometry for the complexes 1 , 4 and 5 .  相似文献   

6.
Preparation and Reactivity of Platinumcyclobutadiene Complexes [PtCl2(C4R4)L] H[PtCl3(C4H8)], prepared by reduction of H2[PtCl6] with n-butanol reacts with 2-pentyne to give equal amounts of the regioisomers [PtCl2(C4Et2Me2)] ( 3 a, 3 b ). An equimolar mixture of 2-butyne/3-hexyne reacts under the same conditions to give [PtCl2(C4Me4)] ( 1 ), [PtCl2(C4Et4)] ( 2 ) and [PtCl2(C4Et2Me2)] ( 3 a ) in a molar ratio 1:1.3:6.6. 1 and 2 react with ligands L (L = py a , p-tol b , PPh3 c , AsPh3 d , SbPh3 e ) to give complexes of the type [PtCl2(C4R4)L]. The complexes were characterized by microanalysis as well as by i.r., 1H- and 13C-n.m.r. spectroscopy.  相似文献   

7.
The first mononuclear ReV complex with four pyrazole ligands, viz., [Re(O)(OMe)L4]Br2 (L is 3,5-dimethylpyrazole), and its molecular adduct with L, viz., [Re(O)(OMe)L4]Br2·L·4H2O, were synthesized. The complex is resistant to hydrolysis in a neutral aqueous solution. The structure of the adduct was established by X-ray diffraction analysis.  相似文献   

8.
The protonation equilibria of nitrilotris(methylenephosphonic acid) (NTMP, H6L) and ethylenediaminetetrakis(methylenephosphonic acid) (EDTMP, H8L) complexes of scandium, yttrium, and lanthanoids have been studied potentiometrically at 25°C and at an ionic strength of 0.1 mol-dm–3 KNO3. The first protonation constants of NTMP complexes of lanthanoids, K MHL , decrease with decreasing of the ionic radius of the lanthanoid [log K MHL =7.82 (La3+) –6.90 (Lu3+)] and show a so-called Tetrad effect. The second protonation constants, K MH 2L, change very little with the lanthanoid metal ions (logK MH 2L=5.3–5.7). These results suggest that, in the first protonation process in ML, the proton attacks the nitrogen of NTMP rupturing the M-N of M(ntmp)3–. The pattern of the change in the protonation constants of the EDTMP complexes with the atomic number of the lanthanoid is quite different from that of the NTMP complexes. This fact indicates that the manner of protonation of the EDTMP complexes differs from that of NTMP complexes. The protonation constants of yttrium complexes of NTMP and EDTMP agree with those of lanthanoid complexes, whereas those of scandium complexes deviate from the values predicted from its ionic radius.  相似文献   

9.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

10.
Several new complexes of dioxomolybdenum(VI) of the general formula [MoO2(L)S], whereL is the dianion of salicylaldehydep-hydroxybenzoylhydrazone andS denotes H2O, MeOH, py, PPh3, DMSO or DMF, were synthesized and characterized by elemental analysis, electronic UV-VIS and IR spectra, thermal analysis, molar conductivity and magnetic susceptibility measurements. Salicylaldehydep-hydroxybenzoylhydrazone participates in the coordination as a tridentate ligand with the ONO set of donor atoms. The complexes contain acis-MoO2 group and are of octahedral geometry. Complexes of the MoO2L type were also prepared by synthesis in CHCl3 solution and by isothermal heating of [MoO2(L)S] complexes. The MoO2L complex synthesized in CHCl3 solution has most probably a pentacoordinated structure while the complex obtained by isothermal heating of [MoO2(L)S] has a polymeric hexacoordinated structure.The authors are grateful to the Serbian Republic Research Fund for financial support and to academician Prof. M. ui for his interest in this work.  相似文献   

11.
The synthesis of 4′-(2-methylphenyl)-2,2′:6′,2″-terpyridine (L) has been improved. The coordination chemistry of the ligand was explored using Ni(II), Cu(II), Zn(II), and Ag(I) ions. X-ray crystallography, elemental analysis, NMR, and mass spectrometry were used to characterize the 13 new compounds that have been synthesized. Under different reaction conditions, Ni(II), Cu(II), and Zn(II) produced discrete complexes, sometimes containing more than one metal ion, while Ag(I) furnished a polymeric spiral complex in which the central pyridine nitrogen of each terpyridine ligand bridges two Ag(I) ions. Crystallographically characterized complexes are [Ni(L)2]Cl2, [Ni2Cl4(L)2], [Ni(L)(OH2)3]Cl2, [Ni(L)2]Br2, [Cu(L)(OH2)(OSO3)], [Cu3Cl6(L)2], [Cu(L)(OH)(OH2)2]PF6, [Cu(L)2](OTf)2, [Cu(L)(OAc)2], [Zn(L)(OAc)2], [Zn(L)Cl2], [Zn(L)2](NO3)2, [{Ag2(μ-L)2(μ-NO3)}n](NO3)n.  相似文献   

12.
The reactions of the cyclometallated gold(III) complexes [LAuCl2] [L=2-(dimethylaminomethyl)phenyl, 2-benzylpyridyl or 2-anilinopyridyl] with catechol, tetrachlorocatechol, or the cyclic α,β-diketone SCH(CO2Et)C(O)C(O)CH(CO2Et) give stable complexes containing five-membered Au-O-C-C-O rings. These represent the first examples of well-characterised gold(III) catecholate complexes. Similarly, reactions with 2-acetamidophenol [HOC6H4NHC(O)CH3] give complexes with the related AuNCCO ring. The complexes were characterised by NMR spectroscopy, electrospray ionisation mass spectrometry, elemental microanalysis, and in the case of the complex [(2-benzylpyridyl)Au{OC6H4NC(O)CH3}] by an X-ray crystal structure determination. Several complexes show high activity towards P388 murine leukemia cells.  相似文献   

13.
Seven novel homo‐binuclear Cr(III), Fe(III), Cu(II), ZrO(II), Sn(II), Pb(II) and Ce(III) nanosized complexes of a thiazole drug (H2L) were synthesized for chemotherapeutic applications. H2L was prepared via a condensation reaction between 2‐(4‐aminobenzenesulfonamido)thiazole and 2‐hydroxybenzaldehyde. The structures of H2L and its metal complexes were investigated by various means. These included microanalysis, 1H NMR, 13C NMR, Fourier transform infrared, UV–visible, electron spin resonance and mass spectroscopies, transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), thermogravimetric analysis (TGA) and molar conductivity. The measurements revealed that H2L coordinates with the metal ions through two chelating centers, indicating its behavior as a dibasic tetradentate ligand. The first center involves the nitrogen of azomethine (CH═N) and the α‐hydroxyl oxygen while the other center is the thiazole nitrogen and the sulfonamide oxygen. From spectroscopic and analytical data, the Cr(III), Fe(III) and Ce(III) complexes have octahedral geometries, whereas the Cu(II), ZrO(II), Sn(II) and Pb(II) complexes have tetrahedral geometries. TEM and XRD measurements unambiguously showed the nanometric particle sizes of the complexes. The activation thermo‐kinetic parameters, E*, ?H*, ?S* and ?G*, of the various decomposition steps of the complexes were determined mathematically from the TGA curves. Gaussian09 and quantitative structure–activity relationship modeling studies were utilized to verify the biological and structural feature relationships. Docking studies were performed to throw more light on the biological priority of the proposed drugs, using microorganism protein receptors. The antitumor and antimicrobial efficiencies of the H2L drug and its complexes were determined to estimate their potential therapeutic utility. In general, the complexes showed greater antitumor and antimicrobial efficiencies than the H2L drug. The Fe(III) complex exhibited efficient antimicrobial activities against Candida albicans and Staphylococcus aureus and its efficiency is equivalent to that of standard drugs. The Cu(II) complex showed the greatest cytotoxic activity towards HEPG2.  相似文献   

14.
The equilibrium geometries and first bond dissociation energies of the homoleptic complexes M(EMe)4 and M(CO)4 with M = Ni, Pd, Pt and E = B, Al, Ga, In, Tl have been calculated at the gradient corrected DFT level using the BP86 functionals. The electronic structure of the metal‐ligand bonds has been examined with the topologial analysis of the electron density distribution. The nature of the bonding is revealed by partitioning the metal‐ligand interaction energies into contributions by electrostatic attraction, covalent bonding and Pauli repulsion. The calculated data show that the M‐CO and M‐EMe bonding is very similar. However, the M‐EMe bonds of the lighter elements E are much stronger than the M‐CO bonds. The bond energies of the latter are as low or even lower than the M‐TlMe bonds. The main reason why Pd(CO)4 and Pt(CO)4 are unstable at room temperature in a condensed phase can be traced back to the already rather weak bond energy of the Ni‐CO bond. The Pd‐L bond energies of the complexes with L = CO and L = EMe are always 10 — 20 kcal/mol lower than the Ni‐L bond energies. The calculated bond energy of Ni(CO)4 is only Do = 27 kcal/mol. Thus, the bond energy of Pd(CO)4 is only Do = 12 kcal/mol. The first bond dissociation energy of Pt(CO)4 is low because the relaxation energy of the Pt(CO)3 fragment is rather high. The low bond energies of the M‐CO bonds are mainly caused by the relatively weak electrostatic attraction and by the comparatively large Pauli repulsion. The σ and π contributions to the covalent M‐CO interactions have about the same strength. The π bonding in the M‐EMe bonds is less than in the M‐CO bonds but it remains an important part of the bond energy. The trends of the electrostatic and covalent contributions to the bond energies and the σ and π bonding in the metal‐ligand bonds are discussed.  相似文献   

15.
16.
The first tetranuclear nickel complex with the oxamato ligand, {[Ni(en)2]4[H4L]}(ClO4)4·7H2O ( 1 ) (L = N, N′, N″, N‴-methanetetrayltetrakismethylenetetrakis (oxamato)), has been prepared and determined by single-crystal X-ray analysis. 1 crystallizes in the tetragonal space group I41/a, with a = 15.2744(9), c = 31.3748(2) Å and Z = 4. Each nickel (II) ion is in a distorted octahedral donor atom environment, which comprises four nitrogen atoms of two en molecules and two oxygen atoms of oxamato bridge. The shape of the entity looks like a propeller. The temperature-dependent magnetic susceptibilities were analyzed by the Curie-Weiss law; the following values were found C = 4.36 cm3 K mol-1, θ = -24.7 K, respectively.  相似文献   

17.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

18.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

19.
Zinc Complexes of a New N, N, O Ligand The tridentate ligand N, N(2‐dimethylaminoethyl)‐3, 5‐di‐tert.‐butyl‐salicylaldimine ( L H) results from the corresponding salicylic aldehyde and N, N‐dimethyl ethylenediamine. With zinc salts it forms the mononuclear halide complexes [ L ZnCl ˙ CH3OH] ( 1 ) and [ L ZnI ˙ CH3OH] ( 2 ) and the presumably polymeric acetate [ L ZnOCOCH3] ( 3 ). With diethyl zinc and diphenylphosphoric acid it yields the phosphate complex [ L Zn‐OPO(OPh)2 ˙ CH3OH] ( 4 ). The coordination of the complexes, which is between trigonal bipyramidal and square pyramidal, and the character of the five donors in the phosphate complex represent the transition state of a hydrolytic substrate cleavage in a zinc enzyme.  相似文献   

20.
A new trinuclear complex, {[Cu(L)]33-CO3)}(ClO4)4 (L = N-(2-thiophenoethyl)-N,N-bis (3-aminopropyl)amine), was synthesized and characterized by single-crystal X-ray analysis. The complex contained three identical mononuclear copper(II) units connected by the μ3-carbonate formed from atmospheric carbon dioxide. The electronic and magnetic properties were studied by cyclic voltammetry and the measurement of magnetic susceptibility, respectively. The μ3-bridging model revealed weak ferromagnetic coupling of Cu(II), with the J value of ?11.28 cm?1 and the Zeeman splitting g value of 2.06, which were determined by means of magnetic measurements in the 2–300 K range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号