首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthesis and Molecular Structure of [Al(SiMe3)3(DBU)] (DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) [Al(SiMe3)3(OEt2)] reacts with DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) at 0 °C yielding [Al(SiMe3)3 · (DBU)] ( 1 ). 1 was characterised spectroscopically (1H, 13C, 29Si, 27Al NMR, IR, MS) and by X-ray structure determination [monoclinic, C2/c, a = 33.053(2), b = 9.307(1), c = 20.810(1) Å, β = 124.07(2)°, V = 5302.4(5) Å3, Z = 8, 218(2) K]. 1 does not react with [Cp2ZrCl2] even in boiling toluene.  相似文献   

2.
Synthesis and Crystal Structures of the Zinc Amido Complexes [Zn(NPh2)2]2 and [Zn(NPh2)2(THF)2] Zinc diphenylamide is prepared from Zn[N(SiMe3)2]2 and diphenylamine by transamination reaction. The compound is characterized by a crystal structure analysis. According to it [Zn(NPh2)2]2 forms centrosymmetric dimeric molecules with Zn–N distances of 185.9 pm for the terminally bonded NPh2 ligand and Zn–N distances of 204.0 and 202.6 pm in the four-membered ring. From tetrahydrofuran solutions [Zn(NPh2)2(THF)2] crystallizes as monomeric molecular complex with Zn–N bond lengths of 192.2 pm in average.  相似文献   

3.
Crystal Structures of [Ti(NPh2)4] and [Ti2(μ-O)(NPh2)6] [Ti(NPh2)4] has been prepared from TiCl3(THF)3 and LiNPh2, the μ-oxo complex [Ti2(μ-O)(NPh2)6] results from partial hydrolysis of [Ti(NPh2)4] in toluene solution. Both complexes are characterized by crystal structure determinations. In [Ti(NPh2)4] the titanium atom is coordinated by the four nitrogen atoms in a distorted tetrahedral fashion with Ti–N bond lengths of 193.8 pm in average. In [Ti22-O)(NPh2)6] the μ-oxo ligand forms a linear symmetric TiOTi bridge with rTiO = 181.2 pm and TiN = 193.4 pm in average.  相似文献   

4.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

5.
Synthesis and Crystal Structure of [(PhCH2)2GaF(tBuNH2)]2 · 2 THF (PhCH2)2GaF reacts with tBuNH2 to the adduct [(PhCH2)2GaF(tBuNH2)] ( 1 ). 1 was characterized by NMR, IR and MS techniques. 1 can be recrystallized from THF forming crystals of [ 1 ]2 · 2 THF. According to an X-ray structure analysis [ 1 ]2 · 2 THF consists of dimers of 1 formed by hydrogen bridges. The THF molecules are coordinated to [ 1 ]2 by hydrogen bridges, too.  相似文献   

6.
Crystal Structures of the Samarium Amido Complexes [Sm(l-X){N(SiMe3)2}2(THF)]2 with X = Cl, Br The crystal structures of the title compounds have been determined by X-ray methods. [Sm(μ-Cl) · {N(SiMe3)2}2(THF)]2 ( 1 ): Space group P21/n, Z = 2, lattice dimensions at 223 K: a = 1429.5(2), b = 1302.3(3), c = 1658.6(3) pm, β = 114.212(10)°, R = 0.0561. [Sm(μ-Br) · {N(SiMe3)2}2(THF)]2 ( 2 ): Space group Pbca, Z = 4, lattice dimensions at 223 K: a = 1850.0(7), b = 1611.0(9), c = 1888.1(6) pm, R = 0.0497. 1 and 2 form centrosymmetric dimeric complexes via μ-X-halogeno bridges. The samarium atoms are coordinated in a distorted trigonal-bipyramidal surrounding, the THF molecule and one of the bridging halogen atoms being in axial positions.  相似文献   

7.
Amido Metalates of Rare Earth Elements. Syntheses and Crystal Structures of [Na(12-crown-4)2][M{N(SiMe3)2}3(OSiMe3)] (M = Sm, Yb), [Na(THF)3Sm{N(SiMe3)2}3(C≡C–Ph)], [Na(THF)6][Lu2(μ-NH2)(μ-NSiMe3){N(SiMe3)2}4], and of [NaN(SiMe3)2(THF)]2. Applications of Rare Earth Metal Complexes as Polymerization Catalysts The amido silyloxy complexes [Na(12-crown-4)2][M{N(SiMe3)2}3(OSiMe3)] with M = Sm ( 1 a ), Eu ( 1 b ), Yb ( 1 c ), and Lu ( 1 d ) were obtained from the trisamides M[N(SiMe3)3]3 and NaOSiMe3 in n-hexane in the presence of 12-crown-4; they form yellow to orange-red crystals, of which 1 a and 1 c were characterized crystallographically. The complexes crystallize isotypically with one another in the monoclinic space group I2/a with eight formula units per unit cell. The metal atoms of the complex anions are tetrahedrally coordinated by the three nitrogen atoms of the N(SiMe3)2 ligands and by the oxygen atom of the OSiMe3 ligand. With 172.4° for 1 a and 179.3° for 1 c the bond angles M–O–Si are practically linear. With ethynylbenzene in the presence of NaN(SiMe3)2 in tetrahydrofuran the trisamides M[N(SiMe3)2]3 react under formation of the complexes [Na(THF)3M{N(SiMe3)2}3 · (C≡C–Ph)] with M = Ce ( 2 a ), Sm ( 2 b ), and Eu ( 2 c ), of which 2 b was characterized crystallographically (monoclinic, space group P21/n, Z = 4). 2 b forms an ion pair in which the terminal carbon atom of the C≡C–Ph ligand is connected with the samarium atom of the Sm[N(SiMe3)2]3 group and the sodium ion is side-on connected with the acetylido group. According to the crystal structure determination (space group P212121, Z = 4) [Na(THF)6][Lu2(μ-NH2)(μ-NSiMe3) · {N(SiMe3)2}4] ( 3 ), which is formed as a by-product, consists of [Na(THF)6]+ ions and dimeric anions, in which the lutetium atoms are connected to form a planar Lu2N2 four-membered ring via a μ-NH2 bridge with average Lu–N distances of 227.2 pm and via a μ-NSiMe3 bridge of average Lu–N distances of 218.5 pm. According to the crystal structure determination (space group P 1, Z = 1) [NaN(SiMe3)2(THF)]2 ( 4 ) forms centrosymmetric dimeric molecules with Na–N distances of the Na2N2 four-membered ring of 239.9 pm and distances Na–O of the terminally bonded THF molecules which are 226.7 pm. The vinylic polymerization of methylmethacrylate (MMA) catalyzed by 1 c resulted in high molecular weight polymethylmethacrylate (PMMA) with moderate yields. The reaction of 1 a or 2 b with MMA did not give PMMA. Insoluble polynorbornene was obtained in low yields by reaction of norbornene/methylaluminoxane (MAO) with 1 a , 1 c , or 2 b . The ring opening polymerization of ϵ-caprolacton or δ-valerolacton catalyzed by 2 b resulted in corresponding polylactones in quantitative yields.  相似文献   

8.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

9.
Synthesis and Structure of two Mixed Substituted Dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) The syntheses of tris(trimethylsilyl)silyl (hypersilyl) and halide substituted dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) are presented. The results of the X‐ray diffraction experiments are presented and discussed in comparison to the AlIII compounds AlBr2Si(SiMe3)3 · THF and AlBr3 · OPh2.  相似文献   

10.
Phosphoraneiminato Complexes of Hafnium. Crystal Structures of [Hf(NPPh3)4] · 3 THF and [Hf(NPPh3)2Cl2(HNPPh3)2] The phosphoraneiminato complexes [Hf(NPPh3)4] · 3 THF ( 1 · 3 THF) and [Hf(NPPh3)2Cl2(HNPPh3)2] ( 2 ) have been prepared as colourless, moisture sensitive single crystals by reactions of hafnium tetrachloride with [CsNPPh3]4 · 2 toluene in tetrahydrofurane solutions by application of different ratios of the educts. Both complexes are characterized by IR spectroscopy and X‐ray crystal structure determinations. 1 · 3 THF: space group P 1, Z = 4, lattice dimensions at 193 K: a = 2007.6(1); b = 2064.2(1); c = 2115.9(1) pm; α = 109.193(4)°; β = 111.285(4)°; γ = 96.879(4)°; R1 = 0.0506. 1 forms monomeric molecules with tetrahedral coordination of the nitrogen‐atoms of the (NPPh3)‐groups towards the Hafnium atom. The HfN distances of 200.9 pm in average correspond with double bonds. 2 : space group P 1, Z = 4, lattice dimensions at 193 K: a = 1444.0(1); b = 1928.1(1); c = 2455.8(2) pm; α = 67.273(8)°; β = 87.445(8)°; γ = 87.082(8)°; R1 = 0.0312. 2 has a monomeric molecular structure with octahedral coordination of the hafnium atom. The chlorine atoms are in trans position to one another, whereas the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are in trans position towards the nitrogen atoms ot the phosphorane imine molecules (HNPPh3). The HfN bond lengths of the (NPPh3) groups of 199.7 pm in average correspond with double bonds, whereas the HfN distances of the HNPPh3 molecules with bond lengths of 230.2 pm in average are of donor‐acceptor type.  相似文献   

11.
The Crystal Packings of (PPh4)2[NiCl4] · 2 MeCN and PPh4[CoCl0.6Br2.4(NCMe)] (PPh4)2[NiCl4] · 2 MeCN was obtained from the reaction of PPh4Cl and NiCl2 in acetonitrile in the presence of S2Cl2, PPh4[Cl2H] being a side product. The product of the reaction of CoS2 with S2Br2 (containing rests of S2Cl2) at 400 °C was treated with PPh4Br in acetonitrile yielding PPh4Br3 and PPh4[CoCl0.6Br2.4(NCMe)]. The crystal structures of the title compounds were determined by X‐ray diffraction. (PPh4)2[NiCl4] · 2 MeCN (space group I 4, a = 1839.3 pm, c = 1375.3 pm) has a crystal packing derived from the BiPh4[ClO4] structure type with a fourfold increased unit cell and one half of the ClO4 positions substituted by pairsof acetonitrile molecules. The crystal structure of PPh4[CoCl0.6Br2.4(NCMe)] (space group I41/a, a = 1804.7 pm, c = 3198.8 pm) is related to the AsPh4[RuNCl4] type with an eightfold increased unit cell. The [CoCl0.6Br2.4(NCMe)] ions are disordered in two orientations and some halogen positions are randomly occupied by Cl and Br atoms. Family trees of group–subgroup relations show the symmetry relations.  相似文献   

12.
Preparation and Properties of Tetra(n-butyl)ammonium cis -Trifluorophthalocyaninato(2–)zirconate(IV) and -hafnate(IV); Crystal Structure of (nBu4N) cis [Hf(F)3pc2–] cis-Dichlorophthalocyaninato(2–)metal(IV) of zirconium and hafnium reacts with excess tetra(n-butyl)-ammoniumfluoride trihydrate to yield tetra(n-butyl)-ammonium cis-trifluorophthalocyaninato(2–)metalate(IV), (nBu4N)cis[M(F)3pc2–] (M = Zr, Hf). (nBu4N)cis[Hf(F)3pc2–] crystallizes in the monoclinic space group P21/n (# 14) with cell parameters a = 13.517(1) Å, b = 13.856(1) Å, c = 23.384(2) Å, α = 92.67(1)°, Z = 4. The Hf atom is in a ”︁square base-trigonal cap”︁”︁ polyhedron, coordinating three fluorine atoms and four isoindole nitrogen atoms (Niso). The Hf atom is sandwiched between the (Niso)4 and F3 planes (d(Hf–CtN) = 1.218(3) Å; d(Hf–CtF) = 1.229(3) Å; CtN/F: centre of the (Niso)4, respectively F3 plane). The average Hf–Niso and Hf–F distances are 2.298 and 1.964 Å, respectively, the average F–Hf–F angle is 84.9°. The pc2– ligand is concavely distorted. The optical spectra show the typical metal independent π-π* transitions of the pc2– ligand at c. 14700 and 29000 cm–1. In the FIR/MIR spectra vibrations of the MF3 skeleton are detected at 545, 489, 274 cm–1 (M = Zr) and 536, 484, 263 cm–1 (M = Hf), respectively.  相似文献   

13.
New GaE and InE Four Membered Ring Compounds: Syntheses and Crystal Structures of [Et2InE(SiMe3)2]2 and [GaCl(P t Bu2Me)E(SiMe3)]2 (E = P, As) Et3In · PR3 (R = Et, iPr) reacts with H2ESiMe3 under liberation of C2H6 and EH3 to form the cyclic compounds [Et2InE(SiMe3)2]2 ( 1 a : E = P, 1 b : E = As). 1 consists of a planar four membered In2E2 ring in which the indium and phosphorus or arsenic atoms are four coordinated. In contrast, the phosphorus/arsenic atoms in [GaCl(PtBu2Me)E(SiMe3)]2 ( 2 a : E = P, 2 b : E = As) only have the coordination number three. 2 results from the reaction of GaCl3 · PtBu2Me with As(SiMe3)3 or Li2PSiMe3 respectively, and displays a folded four membered Ga2E2 ring as central structural motif. 1 and 2 have been characterised by single crystal X‐ray diffraction analysis as well as 1H and 31P{1H} NMR spectroscopy.  相似文献   

14.
The Crystal Structures of PPh4[MCl5(NCMe)] · MeCN (M = Ti, Zr), two Modifications of PPh4[TiCl5(NCMe)] and of cis ‐TiCl4(NCMe)2 · MeCN The title compounds were obtained by reactions of TiCl4 or ZrCl4, respectively, with PPh4Cl and acetonitrile in the presence of S2Cl2. PPh4[TiCl5(NCMe)] · MeCN is unstable and emanates the incorporated acetonitrile. PPh4[TiCl5(NCMe)] forms the two modifications aP114 and mP228, the latter being more stable. The crystal structures were determined by X‐ray diffraction. Triclinic PPh4[TiCl5(NCMe)]‐(aP114) crystallizes in a distorted variety at the tetragonal AsPh4[RuNCl4] type, i. e. with PPh4+ ions that are piled to columns in the c direction; the [TiCl5(NCMe)] ions are tilted vs. this direction and thus cause the symmetry reduction from P4/n to P1. PPh4[TiCl5(NCMe)] · MeCN and PPh4[ZrCl5(NCMe)] · MeCN also have the same packing principle as in AsPh4[RuNCl4] with a symmetry reduction from P4/n to P1121/n and a doubled c axis. Instead, PPh4[TiCl5(NCMe)]‐(mP228) has a packing with (PPh4+)2 pairs. Orthorhombic TiCl4(NCMe)2 · MeCN contains molecules having two acetonitrile ligands attached to the Ti atom in a cis configuration.  相似文献   

15.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

16.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

17.
The Crystal Structure of [Li · 11/3 H2O · C7H8][{(CH3)3Si}3C–GaI3], a Stable Hydrate of Lithium Tris(trimethylsilyl)methyl Triiodogallate Water‐free Li[Tsi–GaI3], prepared from gallium triiodide and base‐free Tsi–Li (Tsi = –C(SiMe3)3) in toluene, which has been recrystallized several times from humid toluene, c‐hexane, benzene and toluene again gives the water‐containing title compound. According to the X‐ray structure determination this product crystallizes in the monoclinic space group P21/c and consists of three‐membered units of [Tsi–GaI3]‐anions forming an asymmetric triangle and a related chain of three Li cations, four fold but dissimilar coordinated by the oxygen atoms of 4 water molecules, the iodligands of different anions and a h2‐bonded toluene molecule, respectively.  相似文献   

18.
The Reaction of Ytterbium with N‐iodo‐triphenylphosphaneimine. Crystal Structures of [Yb2I(THF)2(NPPh3)4] · 2 THF, [YbI2(HNPPh3)(DME)2], and [{YbI2(DME)2}2(μ‐DME)] When treated with ultrasound, the reaction of ytterbium powder with INPPh3 in tetrahydrofuran leads to [YbI2(THF)4] and to the mixed‐valence phosphoraneiminato complex [Yb2I(THF)2(NPPh3)4] · 2 THF ( 1 ), which forms red single‐crystals. In the analogous reaction in 1,2‐dimethoxyethane (DME) only the ytterbium(II) iodide solvates [YbI2(HNPPh3)(DME)2] ( 2 ) and [{YbI2(DME)2}2 · (μ‐DME)] ( 3 ) can be isolated, which form yellow single crystals. All compounds were characterized by crystal structure analyses. 1 : Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1337.6(5), b = 1389.6(5), c = 2244.2(17) pm; α = 86.11(7)°, β = 88.06(7)°, γ = 88.63(4)°; R = 0.0759. In 1 the two ytterbium atoms are connected via the N atoms of two phosphoraneiminato groups (NPPh3) to form a planar Yb2N2 four‐membered ring. The structure can also be described as an ion pair consisting of [YbI(THF)2]+ and [Yb(NPPh3)4]. 2 : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 811.9(1), b = 1114.0(1), c = 1741.3(1) pm; β = 95.458(5)°; R = 0.0246. 2 forms molecules in which the ytterbium atom is coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions. The O atoms of the two DME‐chelates and the N atom of the phosphaneimine ligand HNPPh3 are in the equatorial positions. 3 : Space group P1, Z = 2, lattice dimensions at –70 °C: a = 817.5(1), b = 1047.7(1), c = 1115.5(2) pm; α = 90.179(10)°, β = 97.543(15)°, γ = 91.087(12)°; R = 0.0317. 3 has a dimeric molecular structure, in which the two fragments {YbI2(DME)2} are connected centrosymmetrically via a μ‐DME bridge. As in 2 , the ytterbium atoms are coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions, as well as with the two DME chelates and with one O atom each of the μ‐DME ligand in the equatorial positions.  相似文献   

19.
Polysulfonylamines. CVIII. A Novel Diorganyltin(IV) Complex Cation as Guest Species in an Ionic Urea Inclusion Compound: Formation and Structure of [ trans -Me2Sn{OC(NH2)2}4]2+ · 2 (MeSO2)2N7 · 6 (NH2)2CO The title compound (triclinic, space group P 1, Z = 1, X-ray analysis at –130 °C) was fortuitously obtained during an attempt to complex the known dimeric hydroxide [Me2Sn(A)(μ-OH)]2, where A7 = (MeSO2)2N7, with four equivalents of urea. The trans-octahedral and crystallographically centrosymmetric [Me2Sn(urea)4]2+ cation (Sn–O 221.6 and 223.7 pm, cis-angles in the range 90 ± 1.5°) is the first structurally authenticated [R2Sn(L)4]2+ complex featuring a urea-type ligand L. In the crystal, these cations are sandwiched between and hydrogen-bonded to puckered layers corresponding to the [011] family of planes. Each layer is constructed from rows of A7 anions, which extend parallel to the x axis and are alternatingly cross-linked by a planar zig-zag tape of urea molecules or by a pair of inversion-related urea zig-zag tapes displaying a non-planar roof profile. The structure contains 23 crystallographically independent hydrogen bonds N–H…O/N, comprising two intracationic N–H…O bonds, two and four N–H…O bonds leading to the two respective types of urea tapes, eight N–H…O bonds and one N–H…N7 bond connecting the urea tapes to the electronegative atoms of the anions, and six N–H…O interactions between the ligands of the complex guest cation and C=O or S=O acceptors within the layers of the host lattice. The anion A7 accepts a total of twelve H bonds and adopts a previously unreported conformation.  相似文献   

20.
Synthesis and Properties of trans -Di(fluoro)phthalocyaninatorhenate(III); Crystal Structure of the linear -Bis(triphenylphosphine)iminium Double Salt l (PNP) trans[Re(F)2pc2–] · 0.33l (PNP)F · 2 H2O trans-Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II) reacts with (nBu4N)F · 3 H2O in acetone on air yielding trans-di(fluoro)phthalocyaninato(2–)rhenate(III), trans[Re(F)2pc2–]. The complex anion is precipitated as tetra(n-butyl)ammonium (nBu4N), or after addition of (PNP)HSO4 as linear-bis(triphenylphosphine)iminium (l(PNP)) salt. The latter crystallizes as a double salt of formula l(PNP)trans[Re(F)2pc2–] · 0.33l(PNP)F · 2 H2O in the cubic space group I23 (no. 197) with the cell parameter a = 21.836(2) Å; V = 10412(2) Å3; Z = 6. The Re atom is located in the centre of the (Niso)4 plane (Niso: isoindole-N atom) and coordinates axially two fluorine atoms in a mutual trans position. The Re–N and Re–F distance is 2.035(6) and 1.798(7) Å, respectively. According to the short Re–F distance the asymmetric Re–F stretching vibration is observed in the MIR spectrum at 746 cm–1. Obviously due to a large spin-orbit coupling, the complex salt with an electronic low-spin d4 ground state of ReIII (S = 1) is diamagnetic. Hence a sharp signal is observed at –126.1 ppm in the 19F NMR spectrum. The UV-VIS-NIR spectrum shows the typical π-π* transitions at 15000 (B), 29500 (Q) and 36900 cm–1 (N) and trip-multiplet transitions at 9500/10500 cm–1 and 13200/14100 cm–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号