首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
La4B14O27: A Lanthanum ultra‐Oxoborate with a Framework Structure Single crystals of La4B14O27 could be synthesized by the reaction of La2O3, LaCl3 and B2O3 with an access of CsCl as fluxing agent in gastightly sealed platinum ampoules within twenty days at 710 °C and appear as colourless, transparent and waterresistant platelets. The new lanthanum oxoborate La4B14O27 (monoclinic, C2/c; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, β = 100.125(8)°; Z = 4) is built of a three‐dimensional boron‐oxygen framework containing seven crystallographically different boron atoms. Four of these B3+ cations are surrounded by four O2? anions tetrahedrally, whereas the other three have only three oxygen neighbours with nearly plane triangular coordination figures. Three of the [BO4]5? tetrahedra form [B3O9]9? rings by cyclic vertex‐condensation, which are further linked via [BO3]3? units to infinite layers. Two of these layers connect via one [B2O7]8? unit of two corner‐shared [BO4]5? tetrahedra to double layers, which themselves build up a three‐dimensional framework together with chains consisting of two [BO4]5? tetrahedra and one [BO3]3? triangle. One of the two crystallographically independent La3+ cations (La1) is surrounded by ten O2? anions and resides within the oxoborate double layers. (La2)3+ shows a (8+2)‐fold coordination of O2? anions and occupies channels along the [110] direction.  相似文献   

2.
The rare earth borides RERu4B4 (RE = Ce, Pr, Nd, Sm) were synthesized from the elements by arc‐melting and their crystal structures were studied on the basis of X‐ray powder and single‐crystal diffraction: LuRu4B4 type, I41/acd, a = 747.47(8), c = 1506.4(3) pm, wR2 = 0.0579, 362 F2 values for CeRu4B4, a = 751.3(2), c = 1507.1(5) pm, wR2 = 0.0724, 471 F2 values for PrRu4B4, a = 751.0(2), c = 1506.9(6) pm, wR2 = 0.0598, 384 F2 values for NdRu4B4, and a = 749.1(1), c = 1506.0(3) pm, wR2 = 0.0759, 413 F2 values for SmRu4B4, with 18 variables per refinement. Striking structural motifs of the RERu4B4 structures are Ru4 tetrahedra and B2 dumbbells with Ru–Ru and B–B distances of 271 and 180 pm in CeRu4B4. The intermediate valence of cerium leads to shorter Ce–Ru distances of 292 pm. CeRu4B4 behaves like a Pauli paramagnet with a small room temperature susceptibility of 1.5 × 10–4 emu · mol–1. Chemical bonding analyses shows substantial Ru–B and B–B bonding within the [Ru4B4] substructure.  相似文献   

3.
A new polymorph of nonacopper(II) bis(orthoborate) bis(hexaoxodiborate), Cu9(BO3)2(B2O6)2, or Cu3B2O6 with Z′ = 3, has a pseudo‐layered monoclinic structure containing BO3 triangles and B2O6 units consisting of corner‐sharing BO3 triangles and BO4 tetrahedra. The compound was obtained during an investigation of the Li–Cu–B–O system. In contrast to the triclinic form of Cu3B2O6, the layers are linked to one another by BO4 tetrahedra.  相似文献   

4.
The System Gd/Co/B: Preparation and Characterization by X‐ray Diffraction of GdCo4B, Gd3Co11B4, GdCoB4, and GdCo12B6 The compounds GdCo4B, Gd3Co11B4, GdCoB4, and GdCo12B6 were characterized by X‐ray investigations of single crystals. GdCo4B (P 6/mmm, a = 505.9(1) pm, c = 690.1(1) pm) crystallizes with the CeCo4B structure type; Gd3Co11B4 (P 6/mmm, a = 508.7(1) pm, c = 982.9(9) pm) with the Ce3Co11B4 stucture type; GdCo12B6 ( , a = 949.5(1) pm, c = 747.4(1) pm) with the SrNi12B6 structure type and GdCoB4 (P bam, a = 591.3(9) pm, b = 1145.1(6) pm, c = 346.2(3) pm) with the YbCoB4 structure type.  相似文献   

5.
The compounds α‐RE2B4O9, with RE = Sm (disamarium tetraborate) and Ho (diholmium tetraborate), were synthesized under conditions of high pressure and high temperature in a Walker‐type multianvil apparatus, at 7.5 GPa and 1323 K for α‐Sm2B4O9 and at 10 GPa and 1323 K for α‐Ho2B4O9. The crystal structures were determined from single‐crystal X‐ray diffraction data collected at room temperature. The structures are isotypic with the already known α‐RE2B4O9 (RE = Eu–Dy) phases, displaying the new structural motif of edge‐sharing BO4 tetrahedra next to the known motif of corner‐sharing BO4 tetrahedra. As the end members of this isotypic series, the two title compounds mark the borders of the stability field of the appearance of edge‐sharing BO4 tetrahedra.  相似文献   

6.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

7.
Rare Earth Halides Ln4X5Z. Part 3: The Chloride La4Cl5B4 – Preparation, Structure, and Relation to La4Br5B4, La4I5B4 La4Cl5B4 is synthesized by reaction of LaCl3, La metal and boron in sealed Ta containers at 1050 °C < T < 1350 °C. It crystallizes in the monoclinic space group C2/m with a = 16.484(3) Å, b = 4.263(1) Å, c = 9.276(2) Å and β = 120.06(3)°. Ce4Cl5B4 is isotypic, a = 16.391(3) Å, b = 4.251(1) Å, c = 9.180(2) Å and β = 120.20(3)°. The La atoms form strings of trans-edge shared La octahedra, and the B atoms inside the strings form B4-rhomboids, which are condensed to chains via opposite corners. The Cl atoms interconnect the channels according to La2La4/2Cli−i6/2Cli−a2/2Cla−i2/2. The crystal structures of the bromide and the iodide are comparabel, however, the interconnection of the strings is different in the three structure types, as 14 Cl, 13 Br and 12 I atoms surround the La6 octahedra.  相似文献   

8.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

9.
The crystal structure of LaIr4B4 has been refined from single crystal counter data. LaIr4B4 is tetragonal,P42/n,Z=2, isotypic with NdCo4B4, |F|/|F o|=0.039 for 312 independent reflections [|F o|>2 (F o)]. ThIr4B4 and ThOs4B4 also belong to the NdCo4B4-type structure. URu4B4 and UOs4B4 were found to crystallize with LuRu4B4-type structure. The crystal chemistry of (RE)T 4B4-phases is discussed and simple geometric relations are shown to exist between them.Dedicated to Prof.B. T. Matthias in celebration of his 60th birthday.  相似文献   

10.
La3B6O13(OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and β=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2O6 entities. The compound develops borate layers of „sechser“-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2O6 entities.  相似文献   

11.
The Copper Iridium Boride Cu2Ir4B3 with a Layer Structure Derived from the ZnIr4B3 Type The new compound Cu2Ir4B3 (orthorhombic, Cmcm, a = 283.21(2) pm, b = 2540.6(1) pm, c = 281.06(2) pm, Z = 2, 209 reflexions, 18 parameters, R = 0.043) was prepared by reaction of the elements. The structure is related to the ZnIr4B3 type. It contains slabs composed of Ir6B‐ und Ir6‐prisms which alternate with copper double layers.  相似文献   

12.
A new non‐centrosymmetrical form of lithium molybdyl arsenate has been synthesized and grown as a single crystal. The structure of β‐LiMoO2(AsO4) is built up of corner‐sharing AsO4 tetrahedra and MoO6 octahedra which form a three‐dimensional framework containing tunnels running along the a axis, wherein the Li+ cations are located. This novel structure is compared with the compound LiMoO2(AsO4) of the same formula, and with those of AMO2(XO4) (A is Na, K, Rb or Pb, M is Mo or V, and X is P or As) and B(MoO2)2(XO4)2 (B is Ba, Pb or Sr).  相似文献   

13.
Y16I19C8B4 – a Yttrium Boride Carbide Halide Containing B2C4 Units The new compound Y16I19C8B4 was prepared from Y, YI3, C and B at 1050–1150 °C. The structure of a twinned crystal was determined by means of X-ray diffraction (space group P 1¯, a = 12.311(2) Å, b = 13.996(3) Å, c = 19.695(3) Å, α = 74.96(2)°, β = 89.51(2)°, γ = 67.03(2)°, Z = 2). Y16I19C8B4 is a semiconductor and contains nearly planar B2C4 units which are located in cages built up by 12 yttrium atoms. Assuming (B2C4)12–, these units can be regarded as isoelectronic with B2F4. The yttrium cages are connected via faces to form rods, which are surrounded by iodine atoms. Bridging iodine atoms connect the rods so that layers are formed. The characteristic twinning observed can be understood from the geometry of the crystal structure.  相似文献   

14.
The indium oxide‐borate In4O2B2O7 was synthesized under high‐pressure/high‐temperature conditions at 12.5 GPa/1420 K using a Walker‐type multianvil apparatus. Single‐crystal X‐ray structure elucidation showed edge‐sharing OIn4 tetrahedra and B2O7 units building up the oxide‐borate. It crystallizes with Z = 8 in the monoclinic space group P21/n (no. 14) with a = 1016.54(3), b = 964.55(3), c = 1382.66(4) pm, and β = 109.7(1)°. The compound was also characterized by powder X‐ray diffraction and vibrational spectroscopy.  相似文献   

15.
New auride Ca3Au3In was synthesized from the elements in a sealed tantalum tube in a high‐frequency furnace. Ca3Au3In was investigated by X‐ray powder and single crystal diffraction: ordered Ni4B3 type, Pnma, a = 1664.1(6), b = 457.3(2), c = 895.0(3) pm, wR2 = 0.0488, 1361 F2 values, and 44 variables. The three crystallographically independent boron positions of the Ni4B3 type are occupied by the gold atoms, while the four nickel sites are occupied by calcium and indium in an ordered manner. All gold atoms have trigonal prismatic coordination, i.e. Ca6 prisms for Au1 and Au2 and Ca4In2 prisms for Au3. While the Au3 atoms are isolated, we observe Au1–Au1 and Au2–Au2 zig‐zag chains at Au–Au distances of 292 and 284 pm. These slabs resemble the CrB type structure of CaAu. Consequently Ca3Au3In can be considered as a ternary auride. Together the Au2, Au3 and indium atoms build up a three‐dimensional [Au2In] polyanionic network (281–293 pm Au–In) in which the chains of Au1 centered trigonal prisms are embedded. The crystal chemical similarities with the structures of Ni4B3, CaAuIn, and CaAu are discussed.  相似文献   

16.
Two new sodium aluminum borates, Na3AlB8O15 and Na3Al2B7O15, have been successfully synthesized by the high-temperature solution method. They crystallize in the different space groups, P21/c and P2/c, respectively. The B−O configurations of β-Na2B6O10, Na3AlB8O15 and Na3Al2B7O15 are compared to feature complicated different dimensional open-framework structures caused by the substitution of [BO4] by [AlO4] covalent tetrahedra. Moreover, the experimental results indicate that Na3AlB8O15 and Na3Al2B7O15 have short ultraviolet (UV) cutoff edges (<187 nm). The first-principles calculations show that Na3AlB8O15 and Na3Al2B7O15 have moderate birefringence (0.075 and 0.041@1064 nm, respectively).  相似文献   

17.
Synthesis and Crystal Structure of the First Oxonitridoborate — Sr3[B3O3N3] The cyclotri(oxonitridoborate) Sr3[B3O3N3] was synthesized at 1450 °C as coarsely crystalline colourless crystals by the reaction of SrCO3 with poly(boron amide imide) using a radiofrequency furnace. The structure was solved by single‐crystal X‐ray diffractometry (Sr3[B3O3N3], Z = 4, P21/n, a = 663.16(2), b = 786.06(2), c = 1175.90(3) pm, η = 92.393(1)°, R1= 0.0441, wR2 = 0.1075, 1081 independent reflections, 110 refined parameters). Besides Sr2+ there are hitherto unknown cyclic [B3O3N3]6— ions (B—N 143.7(10) — 149.1(9) pm, B—O 140.5(8) — 141.4(8) pm).  相似文献   

18.
Tb16Br23B4: Tetrameric Terbium Clusters with Endohedral Boron Atoms The new cluster compound Tb16Br23B4 was prepared from a stoichiometric mixture of Tb‐metal, TbBr3 and B‐powder under Ar‐atmosphere in sealed Ta ampoules at 920–950 °C. It crystallizes monoclinic in the space group C2/m with a = 17.523(4) Å, b = 12.008(2) Å, c = 11.901(2) Å und β = 103.95(3)°. In the crystal structure B‐centered Tb6 octahedra are connected via common edges to form tetrameric units. The Br atoms connect the Tb16B4‐clusters 3‐dimensionally coordinating the unoccupied edges and corners of the octahedra. Tb16Br23B4 is a semiconductor with an electrical band gap of Eg = 0.4 eV. The magnetic susceptibility follows a Curie‐Weiss law corresponding to an effective magnetic moment μeff = 9.55 μB at high temperatures with an antiferromagnetic ordering below 20 K.  相似文献   

19.
Sn5Ir6B2 and Sn4Ir7B3: Tin Iridiumborides with Onedimensional Ir/B Structural Elements Sn5Ir6B2 (hexagonal, P6 2m, a = 658.97(5) pm, c = 559.19(3) pm, Z = 1, 391 reflexions, 16 parameters, R = 0.037) and Sn4Ir7B3 (hexagonal, P63/m, a = 926.63(5) pm, c = 563.19(3) pm, Z = 2, 323 reflexions, 24 parameters, R = 0.045) were prepared by reaction of the elements. Their structures were determined by means of single crystal X-ray methods. The structure of Sn5Ir6B2 may be derived from the Fe2P type and contains columns of boron centered trigonal Ir prisms sharing their triangular faces. In the structure of Sn4Ir7B3 six of these columns are connected to form a large column with hexagonal cross section. Only every second prism therein is occupied by a boron atom. In both structures these onedimensional Ir/B structural elements are embedded in a matrix of tin atoms composed of Sn-centered Sn6 prisms twice as long as the Ir6 prisms.  相似文献   

20.
Synthesis and Crystal Structures of Zinc Rhodium Boride Zn5Rh8B4 and the Lithium Magnesium Rhodium Borides LixMg5?xRh8B4 (x = 1.1 and 0.5) and Li8Mg4Rh19B12 The title compounds were prepared by reaction of the elemental components in metal ampoules under argon atmosphere (1100 °C, 7 d). In the case of Zn5Rh8B4 (orthorhombic, space group Cmmm, a = 8.467(2) Å, b = 16.787(3) Å, c = 2.846(1) Å, Z = 2) a BN crucible enclosed in a sealed tantalum container was used. The syntheses of LixMg5?xRh8B4 (orthorhombic, space group Cmmm, Z = 2, isotypic with Zn5Rh8B4, lattice constants for x = 1.1: a = 8.511(3) Å, b = 16.588(6) Å, c = 2.885(1) Å, and for x = 0.5: a = 8.613(1) Å, b = 16.949(3) Å, c = 2.9139(2) Å) and Li8Mg4Rh19B12 (orthorhombic, space group Pbam, a = 26.210(5) Å, b = 13.612(4) Å, c = 2.8530(5) Å, Z = 2) were carried out in tantalum crucibles enclosed in steel containers using lithium as a metal flux. The crystal structures were solved from single crystal X‐ray diffraction data. In both structures Rh atoms reside at z = 0 and all non‐transition metal atoms at z = 1/2. Columns of Rh6B trigonal prisms running along the c‐axis are laterally connected to form three‐dimensional networks with channels of various cross sections containing Li‐, Mg‐, and Zn‐atoms, respectively. A very short Li‐Li distance of 2.29(7) Å is observed in Li8Mg4Rh19B12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号