首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Solid State Sciences》1999,1(4):233-243
Diamido-difluoro-tin Sn(ND2)2F2 can be produced by ammonolysis from (NH4)2SnF6 at 633 K. The compound is a product formed from Sn(ND3)2F4 during the ammonolysis reaction. Sn(ND2)2F2 isostructural with Sn(NH2)2F2 crystallizes in space group C2/m with lattice constants a = 1072.92(7), b = 325.97(1) pm, c = 505.79(4) pm and β = 105.713(6) ° (V = 170.28(1) ·106 pm3) containing two formula units per unit cell. Data refinement by the Rietveld method of neutron time-of-flight data collected at POLARIS yields a weighted profile R-value Rwp = 0.022. Tin is octahedrally coordinated by two fluorine atoms and four amido groups. The octahedra are connected to one-dimensional chains by edge sharing. The ND2 groups are in the bridging position whilst the fluorine atoms are terminal. Nearly linear (175.2(4) °) and angular (134.35(8) °) N-D···F hydrogen linkages connect the chains.  相似文献   

2.
Ammonolysis Reaction of (NH4)2GeF6. Synthesis and Structure of NH4[Ge(NH3)F5] (NH4)2GeF6 reacts with ammonia to yield NH4[Ge(NH3)F5] at 280°C. The reaction path was elucidated by in situ time and temperature resolved X-ray powder diffraction. NH4[Ge(NH3)F5] crystallizes isostructurally to NH4[Si(NH3)F5] in the tetragonal space group P4/n (No. 85) with lattice constants a = 619.41(1) pm and c = 724.70(1) pm. The germanium atom is coordinated by five fluorine atoms and the nitrogen atom of the ammonia molecule. The ammonium cation is located on the Wyckoff position (2 a) in P4/n. The crystal structure is stabilized by extensive hydrogen bonding.  相似文献   

3.
Time and Temperature Resolved in situ X-Ray Powder Diffractometry. The Reaction of (NH4)2SnF6 with Ammonia The thermal decomposition of (NH4)2SnF6 under an atmosphere of ammonia is reported. The complicated reaction paths were illucidated by time and temperature resolved in situ x-ray powder diffractometry. It is shown that this technique is a powerful tool to observe structural changes during reaction. It offers also a valuable access to thermodynamic and kinetic data for solid state and gas phase reactions. (NH4)2SnF6 decomposes under ammonia below room temperature to NH4F and amorphous SnF4 · x NH3. At a temperature of 80°C an intermediate product, (NH4)4SnF8, is formed, which decomposes at 140°C into (NH4)2SnF6 and NH4F. At 250°C (NH4)[Sn(NH3)F5] and Sn(NH3)2F4 are formed. The latter crystallises C-centered monoclinic with lattice constants a = 844.1(5) pm, b = 630.5(3) pm, c = 520.2(3) pm and b? = 114.02(7)°. At 330°C a further decomposition yields SnF2(NH2)2 with a C-centered monoclinic cell and lattice constants a = 1 069(7), b = 325.3(2), c = 504.8(3) pm and b? = 105.83(7)°. Finally above 500°C tin metal is formed.  相似文献   

4.
Perfluoroalkytin compounds R(4−n)Sn(Rf)n (R = Me, Et, Bu, Rf = C4F9, n = 1; R = Bu, Rf = C4F9, n = 2, 3; R = Bu, Rf = C6F13, n = 1) have been synthesized, characterized by 1H, 13C, 19F and 119Sn NMR, and evaluated as precursors for the atmospheric pressure chemical vapour deposition of fluorine‐doped SnO2 thin films. All precursors were sufficiently volatile in the range 84–136 °C and glass substrate temperatures of ca 550 °C to yield high‐quality films with ca 0.79–2.02% fluorine incorporation, save for Bu3SnC6F13, which incorporated <0.05% fluorine. Films were characterized by X‐ray diffraction, scanning electron microscopy, thickness, haze, emissivity, and sheet resistance. The fastest growth rates and highest quality films were obtained from Et3SnC4F9. An electron diffraction study of Me3SnC4F9 revealed four conformations, of which only the two of lowest abundance showed close F Sn contacts that could plausibly be associated with halogen transfer to tin, and in each case it was fluorine attached to either the γ‐ or δ‐carbon atoms of the Rf chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Synthesis and Crystal Strucure of NaPr2F3(SO4)2 Light green single crystals of NaPr2F3(SO4)2 have been obtained by the reaction of Pr2(SO4)3 and NaF in sealed gold ampoules at 1050 °C. In the crystal structure (monoclinic, I2/a, Z = 4, a = 822.3(1), b = 692.12(7), c = 1419.9(2) pm, β = 95.88(2)°) Pr3+ is coordinated by four F ions and six oxygen atoms which belong to five SO4 ions. Thus, one of the latter acts as a bidentate ligand. The [PrO6F4] units are connected via three common fluoride ions to pairs with a Pr–Pr distance of 386 pm. Na+ is sevenfold coordinated by three fluorine and four oxygen atoms.  相似文献   

6.
Polysulfonylamines. CVIII. A Novel Diorganyltin(IV) Complex Cation as Guest Species in an Ionic Urea Inclusion Compound: Formation and Structure of [ trans -Me2Sn{OC(NH2)2}4]2+ · 2 (MeSO2)2N7 · 6 (NH2)2CO The title compound (triclinic, space group P 1, Z = 1, X-ray analysis at –130 °C) was fortuitously obtained during an attempt to complex the known dimeric hydroxide [Me2Sn(A)(μ-OH)]2, where A7 = (MeSO2)2N7, with four equivalents of urea. The trans-octahedral and crystallographically centrosymmetric [Me2Sn(urea)4]2+ cation (Sn–O 221.6 and 223.7 pm, cis-angles in the range 90 ± 1.5°) is the first structurally authenticated [R2Sn(L)4]2+ complex featuring a urea-type ligand L. In the crystal, these cations are sandwiched between and hydrogen-bonded to puckered layers corresponding to the [011] family of planes. Each layer is constructed from rows of A7 anions, which extend parallel to the x axis and are alternatingly cross-linked by a planar zig-zag tape of urea molecules or by a pair of inversion-related urea zig-zag tapes displaying a non-planar roof profile. The structure contains 23 crystallographically independent hydrogen bonds N–H…O/N, comprising two intracationic N–H…O bonds, two and four N–H…O bonds leading to the two respective types of urea tapes, eight N–H…O bonds and one N–H…N7 bond connecting the urea tapes to the electronegative atoms of the anions, and six N–H…O interactions between the ligands of the complex guest cation and C=O or S=O acceptors within the layers of the host lattice. The anion A7 accepts a total of twelve H bonds and adopts a previously unreported conformation.  相似文献   

7.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

8.
[Mg(HF)2](SbF6)2 and [Ca(HF)2](SbF6)2 monocrystals were grown from the corresponding hexafluoroantimonates(V) dissolved in anhydrous hydrogen fluoride. [Mg(HF)2](SbF6)2 crystallizes in the space group Pnma (no. 62) with a=1249.1(4) pm, b=1230.2(4) pm, c=699.1(2) pm, V=1.0742(6) nm3, Z=4. Magnesium is octahedrally coordinated by six fluorine atoms from which two belong to two HF molecules. The structure can be represented by alternating rows of magnesium and antimony atoms running parallel to the c-axis. Magnesium atoms are connected by cis bridging Sb(2)F6 units along the a-axis and by trans bridging Sb(1)F6 units along the b-axis. In this way a three-dimensional network is formed.[Ca(HF)2](SbF6)2 crystallizes in the space group P21/n (no. 14) with a=935.2(3) pm, b=1088.7(3) pm, c=1104.8(3) pm, β=106.697(5)°, V=1.0774(5) nm3, Z=4. The coordination sphere around the calcium atom consists of eight fluorine atoms which define the vertices of an Archimedean antiprism. The two HF molecules directly coordinate the calcium atom and their fluorine atoms are placed in the corners of different square faces of the Archimedean antiprism. The Ca-F(HF) distances are shorter than the Ca-F(Sb) distances. The Sb(1)F6 and Sb(2)F6 groups have four equatorial bridging fluorine atoms, while the Sb(3)F6 groups have only two bridging trans F ligands. The Ca atoms in the [−1,0,1] plane are connected by equatorial F ligands of Sb(1)F6 and Sb(2)F6 units, forming a [Ca(SbF6)+]n layer. These layers are connected by trans bridging Sb(3)F6 groups. HF molecules occupy the space between these layers and additionally contribute to the connection between the layers by hydrogen bonding.  相似文献   

9.
The compounds Ln2AuP3 were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single‐crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U2NiC3 type structure (Pnma, Z = 4). The structure refinement for Ce2AuP3 resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr2AuP3 a residual of R = 0.024 was obtained. Nd2AuP3 crystallizes with a monoclinic distortion of this structure: P21/c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, β = 104.06(1)°, R = 0.022 for 1361 F values and 56 variables. The near‐neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two‐dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au–P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single‐bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln+3)2[AuP3]–6 and (Ln+3)2Au+1(P2)–4P–3. Accordingly, La2AuP3 is a diamagnetic semiconductor. Pr2AuP3 is semiconducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of Bc = 0.5(± 0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro‐ or ferrimagnetic behavior of the compound.  相似文献   

10.
Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2(LR)2] (R=H 1 a ; R=CF3 1 b ) combined with B(C6F5)3 ( 1 a /B(C6F5)3, 1 b /B(C6F5)3) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H−H, Si−H and O−H bonds. Cleavage of H2 and Et3SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR)2][HB(C6F5)3] (R=H 2 a ; R=CF3 2 b ) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2O leads to [Mo(NtBu)(NHtBu)(LR)2][(HO)B(C6F5)3] (R=H 3 a ; R=CF3 3 b ). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a . Mechanistic elucidation revealed insertion of the aldehyde into the B−H bond of [HB(C6F5)3]. We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR)2][{PhCH2O}B(C6F5)3] (R=H 4 a ; R=CF3 4 b ). Catalysis occurs at [HB(C6F5)3] while [Mo(NtBu)(NHtBu)(LR)2]+ (R=H or CF3) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).  相似文献   

11.
Synthesis and Structure of Two Forms of Ammonium Monomolybdate (NH4)2MoO4 Ammonium monomolybdate (NH4)2MoO4 exists in two different polymorphic forms which differ in their lattice constants and in the arrangement of the ammonium cations relative to the molybdate anions. The ammonium molybdates (NH4)2MoO4(mS60)1) and (NH4)2MoO4(mP60)2) are synthesized by the reaction of ammonia and (NH4)6[Mo7O24] · 4 H2O. (NH4)2MoO4(mS60) crystallizes isostructural to the potassium compound in space group C2/m (Nr. 12) and lattice constants a = 1263.6(3), b = 652.2(1) pm, c = 776.4(2) pm and β = 117.36(1)° (V = 568.3(2) · 106 pm3) containig four formula units per unit cell (R = 0.0250). (NH4)2MoO4(mP60) crystallizes monoclinic in space group P21/n (Nr. 14) and lattice constants a = 622.8(2), b = 777.0(1) pm, c = 1118.8(4) pm and β = 98.09(2)° (V = 536.0(3) · 106 pm3) (R = 0.0205). The different arrangements of the polyhedra within the unit cell is caused by hydrogen bridges. A transition point was not yet determined.  相似文献   

12.
Preparation, Crystal Structure, and IR-spectroscopic Investigation of Phosphorus Nitride Imide, HPN2 Pure and fine crystalline phosphorus nitride imide (HPN2) is obtained by heterogeneous ammonolysis of P3N5 with gaseous NH3 (T = 580°C, p = 30 bar, 6 d). X-ray powder diffraction data has been used to refine the crystal structure of HPN2 by the Rietveld full-profile technique (I4 2d; a = 461.82(2) pm, c = 702.04(3) pm; Z = 4; 41 reflections observed, 17° < 2Θ < 125°, CuKα1, germanium monochromator; R(wp) = 0.072, R(I,hkl) = 0.048). In the solid HPN2 contains a three-dimensional framework of corner-sharing PN4-tetrahedra (P N: 159.9(4) pm; P N P: 130.1(4)°. The hydrogen atoms are covalently bonded to half of the nitrogen atoms. The IR spectrum exhibits six vibrational modes v(N H): 3224; vas(PNP): 1330, 1223; vas(PNHP): 971, 901: δ(PNP): 531 cm−1).  相似文献   

13.
Preparation of (C6F5)2SF+MF6? (M ? As, Sb) and Crystal Structure of (C6F5)2SF+SbF6? XeF+MF6? (M ? As, Sb) reacts with (C6F5)2S in HF to form (C6F5)2SF+MF6?. The deeply violet sulfonium salts can be kept without decomposition up to 24 h at room temperature. The hexafluoroantimonate salt crystallizes in the monoclinic space group P21/n with a = 1056.4(7) pm, b = 1446.3(10) pm, c = 1102.9(8) pm, β = 91.29(6)° und Z = 4. The SF-bond distance with 158.4(3) pm is of unusual length. Cations and anions are connected via interionic fluorine contacts to an infinite chain, in which cations and anions form to ABAB sequence along the chain.  相似文献   

14.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

15.
Synthesis and Structure of an Ammonium Diamidodioxophosphate(V), NH4PO2(NH2)2 The ammonolysis of P3N5 under ammonothermal conditions (T = 400°C, p(NH3) = 6 kbar, 14 d in autoclaves) in the presence of small definite amounts of water leads to the formation of NH4PO2(NH2)2. The structure was solved by single crystal X-ray methods. NH4PO2(NH2)2: P21/c (Nr. 14), a = 6.886(1) Å, b = 8.366(2) Å, c = 9.151(2) Å, β = 111.78(3)°, Z = 4, R1/wR2 = 0.026/0.072, Z(F > 2σ(F)) = 1183, N(variables) = 87. In NH4PO2(NH2)2 the anions [PO2(NH2)2]? are linked to chains by N? H …? N and N? H …? O bridge bonds. The ammonium ions are located between these chains and are donors for N? H …? O bridge bonds which connect the chains three-dimensionally.  相似文献   

16.
Li2Br(NH2): The First Ternary Alkali Metal Amide Halide The pseudobinary system LiNH2/LiBr was investigated by X-ray methods. The crystal structure of the compound Li2Br(NH2) was solved by single crystal data: Li2Br(NH2): Pnma, Z = 8, a = 12.484(2) Å, b = 7.959(1) Å, c = 6.385(1) Å, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 348, Z (parameter) = 51, R/Rw = 0.019/0.021 Li2Br(NH2) crystallizes in a new type of structure. To one another isolated chains of [Li2Li4/2(NH2)22+] show the motif of closest rod packing. They are connected via bromide ions in a distorted cubic primitive arrangement.  相似文献   

17.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

18.
The characteristics of crystal structures of the titanium(IV) diammonium (Ti(NH4)2P4O13) and tin(IV) diammonium (Sn(NH4)2P4O13) tetraphosphates, which are isostructural with similar silicon(IV) and germanium(IV) salts, have been obtained by the Rietveld method using X-ray powder diffraction data. The compounds crystallize in the triclinic system, space group P \(\overline 1 \), Z = 2, a = 15.0291(7) Å, b = 7.9236(4) Å, c = 5.0754(3) Å, α = 99.168(3)°, β = 97.059(3)°, γ = 83.459(3)° for Ti(NH4)2P4O13 and a = 15.1454(7) Å, b = 8.0103(5) Å, c = 5.1053(3) Å, α = 99.898(6)°, β = 96.806(3)°, γ = 83.881(4)° for Sn(NH4)2P4O13. The structure is refined in the isotropic approximation using the pseudo-Voigt function: R p = 0.077, R Bragg = 0.045, R F = 0.057 for Ti(NH4)2P4O13; R p = 0.082, R Bragg = 0.044, R F = 0.046 for Sn(NH4)2P4O13. The hydrogen atoms of the ammonium cations are placed in the calculated positions. A comparative analysis of the structures of the compounds of the MIV(NH4)2P4O13 (MIV = Si, Ge, Ti, Sn) series has been carried out.  相似文献   

19.
Synthesis and Crystal Structure of Manganese(II) and Zinc Amides, Mn(NH2)2 and Zn(NH2)2 Metal powders of manganese resp. zinc react with supercritical ammonia in autoclaves in the presence of a mineralizer Na2Mn(NH2)4 resp. Na2Zn(NH2)4_.0.5NH3 to well crystallized ruby‐red Mn(NH2)2 (p(NH3) = 100 bar, T = 130°C, 10 d) resp. colourless Zn(NH2)2 (p(NH3) = 3.8 kbar, T = 250°C, 60 d). The structures including all H‐positions were solved by x‐ray single crystal data: Mn(NH2)2: I41/acd, Z = 32, a = 10.185(6) Å, c = 20.349(7) Å, N(Fo) with F > 3σ (F) = 313, N(parameter) = 45, R/Rw = 0.038/0.043. Zn(NH2)2: I41/acd, Z = 32, a = 9.973(3) Å, c = 19.644(5) Å, N(Fo) with F > 3σ (F) = 489, N(parameter) = 45, R/Rw = 0.038/0.043. Both compounds crystallize isotypic with Mg(NH2)2 [1] resp. Be(NH2)2 [2]. Nitrogen of the amide ions is distorted cubic close packed. One quarter of tetrahedral voids is occupied by Mn2+‐ resp. Zn2+‐ions in such an ordered way that units M4(NH2)6(NH2)4/2 occur. The H‐atoms of the anions have such an orientation that the distance to neighboured cations is optimum.  相似文献   

20.
IntroductionRecentlywehaveinvestigatedthestructuralchemistryofanumberofdi ortri organotinheteroaromaticcarboxyl ates.1 5Thesestudieshaveshownthatthestructureoforgan otinheteroaromaticcarboxylatesisdependentonboththena tureofthealkylorarylsubstituentboundtothetinatomandthetypeofcarboxylateligand .Inparticular,majorstructuralvariationsareobservedwhencarboxylateligandcontainsanadditionaldonoratom ,suchasapyridineNatom ,availableforcoordinationtotheSnatom .1 3,5 8Wehavenowturnedtothemonoorganotin…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号