首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Structure of an Ammonium Diamidodioxophosphate(V), NH4PO2(NH2)2 The ammonolysis of P3N5 under ammonothermal conditions (T = 400°C, p(NH3) = 6 kbar, 14 d in autoclaves) in the presence of small definite amounts of water leads to the formation of NH4PO2(NH2)2. The structure was solved by single crystal X-ray methods. NH4PO2(NH2)2: P21/c (Nr. 14), a = 6.886(1) Å, b = 8.366(2) Å, c = 9.151(2) Å, β = 111.78(3)°, Z = 4, R1/wR2 = 0.026/0.072, Z(F > 2σ(F)) = 1183, N(variables) = 87. In NH4PO2(NH2)2 the anions [PO2(NH2)2]? are linked to chains by N? H …? N and N? H …? O bridge bonds. The ammonium ions are located between these chains and are donors for N? H …? O bridge bonds which connect the chains three-dimensionally.  相似文献   

2.
Synthesis and Structure of Tetrafluoroaurates(III) MI[AuF4] with MI = Li, Rb Single crystal investigations on Rb[AuF4], light yellow, confirm the tetragonal unit cell (K[BrF4]-type) with a = 618.2(1) and c = 1191(1) pm, Z = 4, space group I 4/mcm-D (No. 140). Li[AuF4], light yellow too, crystallizes monoclinic with a = 485.32(7), b = 634.29(8), c = 1004.43(13) pm, β = 92.759(12), Z = 4; space group P 2/c-C (No. 13). The structure of Li[AuF4] is related to the Rb[AuF4]-type of structure.  相似文献   

3.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

4.
Single Crystal Structure Determination on KBiO2 and RbBiO2 and a Crystal Chemical Comparison of MBiO2 (M = Na, K, Rb, Cs) Single crystals of KBiO2 (colourless) and RbBiO2 (colourless) were obtained by solid state reaction of the respective binary metal oxides. Both crystal structures (KBiO2: C2/c; a = 783.13(9), b = 790.92(1), c = 596.86(8) pm, β = 124.81(1)°; Z = 4; 445 diffractometer data; R1 = 0.027; wR2 = 0.069; RbBiO2: C2/c; a = 806.20(5), b = 838.88(4), c = 598.14(4) pm, β = 123.68(1)°; Z = 4; 289 diffractometer data; R1 = 0.040; wR2 = 0.101) reveal infinite [BiO2]-chains extending along the [0 0 1] direction. The compounds are isostructural with NaBiO2 and CsBiO2.  相似文献   

5.
Rubidium Decaamidodichromate(III), Rb4Cr2(NH2)10 – Synthesis and Crystal Structure The reaction of chromium(III) with rubidium amide in a molar ratio of Cr(NH2)3/RbNH2 = 1 : 1.75 at 140 °C and p(NH3) = 3 kbar in a high-pressure autoclave results after 90 days in dark violet crystals of Rb4Cr2(NH2)10. Structure determination was done by single crystal X-ray methods:Pna21 (No. 33), Z = 4, a = 12.244(3) Å, b = 6.727(1) Å, c = 19.775(5) Å, N(F2o > 3σ(F2o)) = 1046, N(Var.) = 94, R/Rw = 0,051/0,059&#TAB;The structure of Rb4Cr2(NH2)10 contains isolated, face-sharing N-octahedra around two Cr3+-ions giving [Cr(NH2)3(NH2)3/2]23–. These are arranged to oneanother following the motif of a hexagonal closest packing. They are connected via Rb+- and one further amide ion not bound to Cr3+. The compound is characterized by thermoanalytical and IR-/Raman-spectroscopic measurements.  相似文献   

6.
7.
Synthesis and Crystal Structure of a Cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4] · 2 CsNH2 Well crystallized Cesium-tetraimidophosphate-diamide is obtained by the reaction of CsNH2 with P3N5 in autoclaves at 673 K within three days. X-ray single crystal investigations led to the following data
  • Ccca, Z = 4, a = 8.192(5) Å, b = 20.472(5) Å,
  • c = 8.252(3) Å
  • Z(F) ≥3σ(F) = 916, Z(Var.) = 32, R/Rw=1 = 0.017/0.021
The compound contains the hitherto unknown anion [P(NH)4]3?.  相似文献   

8.
Synthesis and Crystal Structure of Alkali Metal Diamido Dioxosilicates M2SiO2(NH2)2 with M ? K, Rb and Cs SiO2 – α-quartz – reacts with alkali metal amides MNH2 (M ? K, Rb, and Cs) in molar ratios from 1:2 to 1:10 at 450°C ≤ T ≤ 600°C and P(NH3) = 6 kbar in autoclaves to diamidodioxosilicates M[SiO2(NH2)2]. Crystals of the colourless compounds which hydrolyze rapidly were investigated by x-ray methods. Following data characterize the structure determination on the isotypic compounds: The structures of the diamidodioxosilicates are closely related to the β? K2SO4 type. They contain isolated [SiO2(NH2)2]2? ions. K+ ions and hydrogen bridge bonds N? H…?O (with 2.68 Å ≤ d(N…?O) ≤ 2.78 Å for the K compound) connect the tetrahedral anions.  相似文献   

9.
Preparation and Crystal Structure of Rb2Ni3Se4 The compound Rb2Ni3Se4 was synthesized by heating a mixture of rubidium carbonate, nickel and selenium at 850°C in an atmosphere of hydrogen. The compound has a golden lustre and crystallizes with the K2Pd3S4-type structure; a = 10.555(3) Å, b = 27.588(6) Å, c = 6.031(6) Å, Z = 8, Fddd (No. 70). The structure can be described as a stacking of layers of the composition Rb2Ni3Se4 with a stacking sequence abcd. The electrostatic part of lattice energy (MAPLE) will be discussed for compounds of the compositions A2M3X4 (A K, Rb, Cs; M Ni, Pd, Pt and X S, Se).  相似文献   

10.
Structural Relationship of Potassium Hexahydroxoscandate(III), K3[Sc(OH)6] with the Isotypic Hydroxometallates Rb3[Sc(OH)6], K3[Cr(OH)6], and Rb3[Cr(OH)6] Ternary hydroxides M}MIII(OH)6{ with MI ? K, Rb and MIII ? Sc, Cr were obtained in the same way as K3[Cr(OH)6] [1] from alkali metal amides and d-metal nitrates by a comproportionation reaction of amide and nitrate ions in supercritical ammonia to elementary nitrogen and hydroxide ions at 523 K and 3 ≤ p(NH3) ≤ 6 kbar within 1 to 3 months. Their structures were determined by single crystal x-ray methods inclusive the positions of the hydrogen atoms. The ratio of size of r(MI)/r(MIII) is related to the symmetry of these hydroxometallates. Structural relationships between K3[Sc(OH)6] and Rb3[Sc(OH)6], K3(Cr(OH)6], Rb3[Cr(OH)6]) and K4[CdCl6] [4] are discussed.  相似文献   

11.
Synthesis and Crystal Structure of Rb8[P4N6(NH)4](NH2)2 with the Adamantane-like Anion [P4N6(NH)4]6? RbNH2 reacts with P3N5 (molar ratio 6:1) at 400°C within 5 d to colourless Rb8[P4N6(NH)4](NH2)2. Suitable crystals for a X-ray structure determination were obtained: The compound contains adamantane-like molecular anions [P4N6(NH)4]6?. Their centres of gravity are arranged in a distorted hexagonal primitive array. All trigonal prisms of this array contain one amide ion. Rubidium ions connect the anions irregularly.  相似文献   

12.
Preparation and Crystal Structure of Rb2Sn3S7 · 2 H2O and Rb4Sn2Se6 Rb2Sn3S7 · 2 H2O has been prepared by hydrothermal reaction of SnS2 and Rb2CO3 in an with H2S saturated aqueous solution at 190°C. The crystal lattice contains chain anions [Sn3S72?] which display both SnS4 tetrahedra and SnS6 octahedra. Methanolothermal reaction of SnCl2 with Se and Rb2CO3 at 145°C leads to the formation of Rb4Sn2Se6 which contains edge-bridged bitetrahedral [Sn2Se6]4? anions.  相似文献   

13.
Synthesis and Structure Analysis of (i-Pr)2NB(t-BuP)3 and (i-Pr)2NB(t-BuP)4 The diphosphide K(t-Bu)P-(t-BuP)2-P(t-Bu)K obtained by the cleavage reaction of the 3-membered ring system (i-Pr)2BN(t-BuP)2 with potassium reacts with t-BuPCl2 at ?78°C under ring expansion to form the P3B ring system (i-Pr)2NB(t-BuP)3 – 1,2,3-tri-t-butyl-tri-phospha-4-diisopropyl-aminoboretane ( 1 ). – The 5-membered P4B ring system (i-Pr)2NB(t-BuP)4 – 1,2,3,4-tetra-t-butyl-tetraphospha-5-diisopropylaminoborolidine, ( 2 ) – is formed from K(t-Bu)P? (t-BuP)2? P(t-Bu)K and (i-Pr)2NBCl2 analogous to the above reaction. 1 and 2 could be obtained in a pure form and characterized NMR spectroscopically and by X-ray structure analysis. 1 shows at 200 K two conformation isomers; for 2 31P-10,11B-isotopic shifts could be identified.  相似文献   

14.
姚有为  王如骥 《应用化学》2002,19(6):611-612
晶体结构;水热合成;一种新颖层状磷酸镓化合物[Ga3(PO4)4](H3NCH2CH2)2NH2的合成与结构表征  相似文献   

15.
Tetraarylesters of μ-Imido-Diphosphoric Acid and its Thio Derivatives — Structure Investigations New O,O′,O″,O?-tetratolyl- and ditolyl-diphenylesters of the μ-imido-diphosphoric acid and its mono and dithio derivatives were synthesized, compared with the corresponding tetraphenylesters and investigated by 1H, 13C, and 31P NMR spectroscopy and X-ray crystal structure analysis. Structures of the O,O′,O″,O?-tetrakis-(2-methyl-phenyl)-μ-imidodiphosphate, 1b , as well as of the corresponding ortho-, meta- and para-tolylesters of the μ-imido-monothiodiphosphoric acid ( 2a , 2b , 2c ) were determined. All the compounds form dimers via N? H…?O hydrogen bonds in the crystal as well as in nonpolar solvents. The distances around the phosphorus atoms rise with decreasing electronegativity of the phosphorus substituents. Signs of the 2JP? N? P coupling constants were determined by 13C{1H, 31P} triple resonance experiments for some compounds. These constants become more negative owing to substitution of a phosphoryl by a thiophosphoryl group.  相似文献   

16.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

17.
Synthesis and Crystal Structure of Cu4[PhN3C6H4N3(H)Ph]42-O)2, a Tetranuclear Copper(II) Complex with 1-Phenyltriazenido-2-phenyltriazeno-benzene as Ligand Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2 ( 1 ) results from the reaction of an aqueous solution of [Cu(NH3)4]2+ with 1,2-bis(phenyltriazeno)benzene in ether. 1 crystallizes in the orthorhombic space group Pba2 with the lattice parameters a = 1661.5(5), b = 1914.7(7), c = 1269.2(5) pm; Z = 2. In the tetrameric complex with the symmetry C2 the Cu2+ cations form a tetrahedron (Cu? Cu: 298.3(1)?337.1(1) pm). The μ2-oxo ligands occupy the twofold axis and bridge two opposite edges of the Cu4 tetrahedron (Cu? O: 190.0(3) and 192.5(4) pm). The 1-phenyltriazenido-2-phenyltriazeno benzene anions bridge two Cu2+ ions chelating one metal ion and coordinating monodentate the neighbouring one (Cu? N: 191.0(5)–204.1(4) pm).  相似文献   

18.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

19.
Polysulfonyl Amines. LXI. Silver(I) in a Novel N-Donor Environment: Synthesis and Structure of catena-Poly[(dimesylamido-N)(acetonitrile)(μ-pyrazine)silver(I)] The complex [Ag{N(SO2Me)2}(μ-pz)(MeCN)] is precipitated upon adding pyrazine to an acetonitrile solution of AgN(SO2Me)2. Crystallographic data (at ?100°C); monoclinic, space group P21/c, a = 912.3(2), b = 1 396.5(3), c = 1 151.7(3) pm, β = 97.20(2)°, U = 1.4557 nm3, Z = 4. The structure consists of infinite zigzag chains in the z-direction. The chain backbone is composed of silver atoms linked by pyrazine ligands (N? Ag? N 99.4°, Ag? N 232.4 und 234.0 pm). The severely distorted tetrahedral environment of Ag is completed by an N-bonded dimesylamide anion (Ag? N 224.3 pm) and an acetonitrile molecule (Ag? N 240.9 pm). The N? Ag? N angles vary from 97.5 bis 125.7°.  相似文献   

20.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号