首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical properties of mechanochromic materials change under mechanical stress. Segmented polyurethanes are elastomers composed of amorphous, saturated chain soft segments, and rigid pi‐conjugated hard domains. Within aggregates of hard domains pi–pi interactions may form and result in perturbation of the optoelectronic properties of the system. Disruption and restoration of these electronic interactions within the material may lead to observable mechanochromic response. A series of oligothiophene diols and diamines, as well as a naphthalene diimide diol, have been synthesized for incorporation into the hard domains of segmented polyurethanes and polyureas using long poly(tetramethylene oxide) chains as soft segments. The resulting polymers were evaluated to determine their extent of polymerization and their thermal stability. The optical properties of the materials were studied in solution and as thin films. Where possible the electrochemical properties of the polymers were also explored. The length of the soft segment chains in the segmented polyurethanes hindered electronic coupling of hard domains. Future work involving smaller, more solubilizing soft segments may allow for easier material characterization and mechanochromic response. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
Poly(urethanes) having the structure of comb-shaped copolymers were synthesized from glycerol monostearate, poly(ethylene glycols) with M n = 300–6000, and 1,6-hexamethylene diisocyanate. Effects of the molecular mass of segments and of the contents of soft segments and side chains on both the glass transition temperature of the soft segment and on the melting point and the enthalpy of melting of crystalline phases involving soft segments and side chains were studied by DSC and IR spectroscopy. The resulting comb-shaped copolymers were shown to exhibit thermoplastic and hydrophilic behavior. It was demonstrated that the ultimate tensile strength, yield stress, and Young’s modulus of copolymer films increase with an increase in the molecular masses of soft and hard segments with their ratio maintained constant.  相似文献   

3.
We report the structure and properties of segmented poly(urethaneurea) (SPUU) with relatively short hard‐segment chains. The SPUU samples comprised poly(tetramethylene glycol) prepolymer as a soft segment and 4,4′‐diphenylmethane diisocyanate (MDI) units as a hard segment that were extended with ethylenediamine. To discuss quantitatively the conformation of the soft‐segment chain in the microphase‐separated domain space, we used SPUU samples for which the molecular weights of the hard‐ and soft‐segment chains are well characterized. The effects of the cohesive force in the hard‐segment chains on the structure and properties of SPUU were also studied with samples of different chain lengths of the hard segment, although the window of xH, the average number of MDI units in a hard‐segment chain, was narrow (2.38 ≤ xH ≤ 2.77). There were urethane groups in the soft segments and urea groups in the hard segments. Because of a strong cohesive force between the urea groups, we could control the overall cohesive force in the hard‐segment chains by controlling the chain lengths of the hard segment. First of all, microphase separation was found to be better developed in the samples with longer hard‐segment chains because of an increase of the cohesive force. It was also found that the interfacial thickness became thinner. The long spacing for the one‐dimensionally repeating hard‐ and soft‐segment domains could be well correlated with the molecular characteristics when the assumption of Gaussian conformation was employed for the soft‐segment chains. This is unusual for strongly segregated block copolymers and might be characteristic of multiblock copolymers containing rod–coil chains. The tensile moduli and thermal stability temperature, TH, increased with an increase of the cohesive force, whereas the glass‐transition temperature, the melting temperature, and the degree of crystallinity of the soft‐segment chains decreased. The increase in TH especially was appreciable, although the variation in the chain length of the hard segment was not profound. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1716–1728, 2000  相似文献   

4.
A series of polyester‐based poly(urethane urea) (PUU) aqueous dispersions with well‐defined hard segments were prepared from polyester polyol, 4,4′‐diphenylmethane diisocyanate, dimethylolpropionic acid, 1,4‐butanediol, isophorone diisocyanate, and ethylenediamine. These anionic‐type aqueous dispersions had good dispersity in water and were stable at the ambient temperature for more than 1 year. For these aqueous dispersions, the particle size decreased as the hard‐segment content increased, and the polydispersity index was very narrow (<1.10). Films prepared with the PUU aqueous dispersions exhibited excellent waterproof performance: the amount of water absorption was as low as 5.0 wt %, and the contact angle of water on the surface of this kind of film was as high as 103° (this led to a hydrophobic surface). The water‐resistant property of these waterborne PUU films could be well correlated with some crystallites and ordered structures of the well‐defined hard segments formed by hydrogen bonding between the urethane/urethane groups and urethane/ester groups, as well as the degree of microphase separation between the hard and soft segments in the PUU systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2606–2614, 2005  相似文献   

5.
The tensile properties of polyether-based polyurethane (PU) filaments decrease with increasing chlorine concentrations as well as with treatment times. Fourier transform infrared (FTIR) results show the formation of quinoid, azo, and aldehyde groups in the chlorine-treated PU, and increased hydrogen bonding between the C O C in the soft segment and the N H in the hard segments. A breakdown mechanism involving chain cleavages along the ether linkages in the soft segments as well as at the urethane linkages of the hard–soft segment interfaces is proposed. Chlorine-treated PU showed increased solubility in tetrahydrofuran (THF). The molecular weight data of the THF-soluble portion of treated PU also support the proposed locations of chain scissions. The increased soft segment Tg and Tm with increasing chlorine concentrations are results of increased phase-mixing and hydrogen bonding. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3263–3273, 1997  相似文献   

6.
A series of polyurethane (PU) thin films with different hard-to-soft segment ratios were synthesized in our laboratory. The molecular and morphological structures of the PU films were characterized with Fourier transform infrared (FTIR), small-angle X-ray scattering (SAXS), wide-angle x-ray diffraction, dynamic mechanical analysis, and differential scanning calorimetry. The PU films showed a single glass transition when the hard-to-soft segment ratio varied from 1:2 to 1:8, suggesting no significant phase separation between the hard and soft segments. FTIR and SAXS results disclosed that the PU films had a network structure with the physical crosslinks formed via the intermolecular hydrogen bonds established between the hard segments. The fracture toughness of the ductile PU films was characterized with the essential work of fracture method under different conditions. It was found that the specific essential work of fracture was a function of the chain length between crosslinks and independent of the test temperature when fracture occurred at a temperature below the glass transition temperature. The physical meaning of this fracture parameter was proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1418–1424, 2007  相似文献   

7.
Two series of well‐defined polyurethaneurea (PUU) aqueous dispersions consisting of fluorinated siloxane units in the hard and the soft segments, respectively, were prepared from polyester polyol, α,ω‐dihydroxypoly[(3,3,3‐trifluoropropyl) methylsiloxane] (PTFPMS), dimethylolpropionic acid, isophorone diisocyanate, and ethylenediamine. These anionic aqueous dispersions were stable at the ambient temperature for more than 6 months. The experimental results showed that the water‐resistance performance of the PUU films prepared with the insertion of PTFPMS units into the hard segments (HFS series) were better than those prepared with the insertion of PTFPMS units into the soft segments (SFS series). The film prepared from the PUU aqueous dispersion incorporating 5 wt % PTFPMS in the hard segments exhibited the lowest water absorption amount (2.3 wt %) with the contact angle of water on the film surface greater than 90°. In comparison with the PUU film without adding PTFPMS, the waterproof performance and the mechanical properties of both HFS and SFS series were enhanced markedly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5005–5016, 2007  相似文献   

8.

Tetrablock polyurethane ureas with mixed soft segments and dissimilar hard urethane urea blocks, based on oligo(propylene oxide)diol, oligo(tetramethylene oxide)diol, 2,4-toluene diisocyanate, isophorone diisocyanate, and methylene-bis-o-chloroaniline as a low-molecular-mass chain extender were synthesized and studied. The fragmentary ordering of the polymer chains of the new polyurethane urea was proved by rheokinetic data. The structure–property relationship for the polymer was found. The new polyurethane ureas surpass in the true strength the available diblock polyurethane ureas with poly(propylene oxide) soft segments by a factor of 1.5. The strength properties of the new tetrablock polyurethane ureas only weakly depend on the strain rate varied in the range 0.56–0.006 s–1.

  相似文献   

9.
Model hard segments from MDI and different chain extenders have been studied by DSC. Among the studied α-ω alkane diol-type chain extenders, all giving crystalline hard segments, butane diol shows the highest melting temperature, while other types such as 1,4-diaminobutane, 1,4-benzene dimethanol, and 4,4′-methylene-bis(2-chloroaniline), so-called MOCA, have no melting endotherm in the range 30–260°C. In addition to DSC, dynamic mechanical properties were measured on linear block polyurethanes having both hard segments and soft ones of hydrogenated 1,2-polybutadiene. The hard segments in the polyurethane chains are of amorphous structure or low crystallinity, and their high-temperature behavior depends only on their strength of interaction in the amorphous state. Accordingly, MOCA shows the highest hard-block softening temperature.  相似文献   

10.
Multiblock poly(ester-block-amide)s (PEA) elastomers comprising hard blocks of oligoamide and oligoester soft segments were prepared and their structure-property relations were analysed. The polycondensation reaction of oligoesters (prepared from 1,4-butanediol and dimerized fatty acid) with oligolaurolactam (PA12) gave copolymer series with variable blocks content (the soft segments content was varied from 24 to 60 wt.%). PEAs are the phase system composed of crystallised sequences of oligoamide (hard segment phase) as well as oligoesters (soft segment phase). Mixing between the hard and soft phases was studied by thermal and mechanical measurements (DSC, DMTA). These results have indicated on a multiphase structure of investigated materials. The relationship between the observed thermal and tensile properties and the soft/hard segments content indicated on an increase of the phase separation with soft segments content.  相似文献   

11.
不同软段长度PBT-co-PBS-b-PEG嵌段共聚物的合成与表征   总被引:6,自引:0,他引:6  
用熔融缩聚法合成了一系列具有不同软段长度的聚对苯二甲酸丁二酯 (PBT) co 聚丁二酸丁二酯(PBS) b 聚乙二醇 (PEG)嵌段共聚物 (PTSG) ,考察了PEG分子量 (Mn(PEG) )及PBS摩尔分数 (MPBS)对材料性能的影响 实验表明 ,随Mn(PEG)增加 ,缩聚反应时间延长 ,所得产物分子量均呈较为对称的单峰分布 ,多分散性指数小于 2 0 硬段序列结构分析显示 ,随MPBS 增加 ,PBT平均序列长度减小 ,而PBS平均序列长度增加 ,二者呈无规分布 .受组成及硬段平均序列长度变化影响 ,材料内部呈微观相分离状态 ,DSC曲线上可分别观察到软、硬段熔点及玻璃化转变温度 ;硬段熔点及结晶度随MPBS升高而降低 ,主要是受其平均序列长度变化及共晶作用所致 .材料断裂延伸率及降解速率均随Mn(PEG)及MPBS增加而增加 ,可见提高软段长度及降低硬段结晶度等均能有效改善共聚物高分子链的柔韧性及亲水性 ,赋予共聚物更好的降解性能 .  相似文献   

12.
The internal structure and orientation behavior of two series of spandex fibers, which were made with different spinning methods and different soft and hard segment types, were studied by FTIR (Fourier Transform Infrared Spectroscopy), polarizing light microscopy, and Instron. The orientation behavior of hard and soft segments was studied with FTIR and those of polymeric chains with polarizing miscroscopy while the fibers were being stretched by the mechanical stretcher. The orientation behavior of dry-spun fibers was observed to be very different from that of the melt-spun fibers, which may be explained in terms of the internal structural difference such as the degree of phase separation and mechanical stability of the hard domains between the two types of fibers. In general, the dry-spun fibers showed better elastic recovery property than the melt-spun fibers. Since the polymer for the dry-spun fibers was synthesized with ethylene diamine as a chain extender resulting in the urea groups in the hard segments, it forms more stable hard domain due to the high cohesion energy between the urea groups. The change of the birefringence values during the cyclic deformation was studied with the polarizing light microscopy. The birefringence behaviors of the two dry-spun fibers were similar, whereas there was a noticeable difference between the two melt-spun fibers. The difference was explained in terms of the effect of crosslinking agent in one of the melt-spun fibers, which can stabilize the hard domain structure against the external stress. Mechanical hysteresis values measured gave results consistent with those of FTIR and birefringence measurements. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1821–1832, 1997  相似文献   

13.
聚硅氧烷聚脲多嵌段共聚物中氢键的研究   总被引:4,自引:0,他引:4  
采用多种手段研究了聚硅氧烷与聚脲嵌段共聚物中所存在的各类氢键.特别探讨在聚硅氧烷软段中引入极性氰丙基对体系成氢键能力的影响和两相间相互作用力的情况结果表明,在软段分子中引入极性氰丙基有利于增加聚硅氧烷分子与聚脲链段的相互作用,这一相间作用力使两相间界面层厚度随着硬段分子量的增加而加宽,并发现在聚硅氧烷聚脲嵌段共聚物中硬段的聚集形态随溶液浓度改变变化不大,其中氢键随着温度升高而下降.  相似文献   

14.
Structured soft‐core/hard‐shell hydrophobic latices form rigid and transparent films under ambient conditions without the need of coalescing aids. The studied films have a composite structure, with the majority of soft poly(n‐butyl acrylate) dispersed in a continuous poly(methyl methacrylate) (PMMA) matrix. The matrix is formed by thin latex shells brought into intimate contact by surface forces. Despite the weakness of the interfaces between adjacent shells, the films exhibit high yield stress and surprising ductility. These properties result from a very specific PMMA matrix structure built from PMMA ligaments with a thickness of a few nanometers. Under these conditions, PMMA appears to shear without damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 224–234, 2003  相似文献   

15.
通过一步反应,直接合成了α,ω-3-二(3-氨基丙基)-聚三氟丙基甲基硅氧烷,并进行了表征,然后将其与聚四氢呋喃二醇(PTMG)作为混合软段,合成了不同FPS含量改性的聚醚型聚氨酯脲(FSPUU).研究了FSPUU膜的表面性能和形态结构,实验结果显示FSPUU膜的表面呈现憎水性,与F元素富集于表面有关.将FSPUU膜浸没于CoCl2-20%H2O2溶液中进行了为期21天的加速氧化处理,并估算了PTMG软段的降解程度.与PDMS改性PUU(MSPUU)相比,FSPUU的氧化稳定性增强,与FSPUU在水和H2O2溶液中较低的溶胀率以及透水率有关.此外,FSPUU膜显示出较好的力学性能,其拉伸强度和断裂伸长率均高于MSPUU.  相似文献   

16.
The design, synthesis, characterization, and structure–property behavior of polyureas containing novel soft segments of mixed polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) chains and conventional hard segments is presented. Modest amounts (12%) of PTMO in the soft PIB phase significantly increase both the tensile strength and elongation of the polyureas. These polyureas exhibit not only oxidative/hydrolytic stabilities far superior to Bionate® and Elast‐Eon® considered the most oxidatively stable polyurethanes on the market but also display mechanical properties (29 MPa tensile strength and 200% elongation) approaching those of conventional thermoplastic polyurethanes. The surfaces of these polyureas are covered/protected by PIB segments, which will lead to excellent biocompatibility. Our results demonstrate that the PTMO segments facilitate stress transfer from the continuous mixed soft phase to the dispersed hard phase, which strengthens and flexibilizes PIB‐based polyureas and thus significantly improves elastomeric properties without compromising oxidative and hydrolytic stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2787–2797, 2009  相似文献   

17.
The synthesis of waterborne polyurethane cationomers was successfully carried out. Different proportions of α,ω‐di(hydroxyl)polydimethylsiloxane (PDMS) modifier (0–7.3% by weight) were applied. Analysis of IR spectra confirmed the structure of obtained polyurethane cationomers and the incorporation of a modifier into the polyurethane structure. The differential scanning calorimetry (DSC) method was employed for the microstructural assessment of the obtained materials. A clear decrease of the degradation temperature with increasing amounts of incorporated PDMS indicates immiscibility part of the polysiloxane segments with soft segments derived from polyethylene glycol. Changes were discussed in the free surface energy and its components, as calculated independently according to the method suggested by Owens–Wendt, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Test results of contact angle measurements indicated that with increasing content of the polysiloxane in the analyzed films, the contact angles increase. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Segmented poly(ester urethanes) were synthesized from oligomeric cellulose triacetate diols, poly(caprolactone)diols, and 1,6-hexamethylene diisocyanate. The effects of the molecular mass and structure of soft and hard segments of poly(ester urethanes) on their thermal behavior, mechanical properties, and degradation in aqueous solutions of a phosphate buffer were studied by DSC and IR spectroscopy. The combination of soft segments derived from poly(caprolactone)diols with M = (1.0–3.5) × 103, hard segments based on depolymerized cellulose triacetate with M = (2–4) × 103, and 1,6-hexamethylene diisocyanate makes it possible to synthesize poly(ester urethanes) with excellent mechanical characteristics. The degree of crystallinity of these polymers increases with a decrease in the molecular mass of the depolymerized cellulose triacetate block in the hard segment. As the soft segment lengthens, phase separation between domains of soft and hard segments becomes more pronounced. Upon incorporation of poly(ethylene glycol) blocks into the soft segments of poly(ester urethanes), their hydrophobicity is enhanced and biodegradability is accelerated.  相似文献   

19.
The enhanced hydrogen bonding, manifested by significant frequency decreasing of both N? H and C?O stretching vibrations, is confirmed in a biomedical poly(carbonate urethane) with fluorinated chain extender. It gives rise to preferential association among hard segments and thus promoted microphase separation, which is responsible for the plastic deformation behaviors of the fluorinated poly(carbonate urethane). Furthermore, the segmental orientation, including both soft and hard segments, has been well correlated with the enhanced hydrogen bonding as well as promoted microphase separation. Under stretching large domains are prone to orient with their long axis along tensile direction and thus a negative orientation of hard segments is observed. Meanwhile, decreased orientation of soft segments can also find its origin in the reduced crosslinking density provided by hard domains because of preferential association among hard segments in such a biomedical material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2198–2205, 2009  相似文献   

20.
The nature creates many biomaterials such as spider silk which exhibits a combination of stiffness, strength and toughness. However, most of synthetic unfilled materials suffer from a trade-off between toughness and stiffness. Inspired by the structure of spider silk but beyond it, we proposed a novel molecular design to achieve transparent unfilled waterborne polyurethane (WPU) with simultaneously enhanced stiffness (280.9 MPa), tensile strength (25.1 MPa) and toughness (140.0 MJ/m3) as well as good elasticity (710%). The designed WPU comprised homogeneous continuous phase (soft segments) and diverse H-bonds (hard segments) dispersed in it. The increase of rigid molecular chain content and H-bonds contributed to the high stiffness of WPU. Furthermore, the mismatch of stiffness between hard domains and soft segments might promote crack deflection and branching, which endowed the robust WPU with fracture energy of 81.16 kJ/m2. The robust WPU film could be healed to recover most of its original mechanical properties (strength for 24.4 MPa and elongation for 610%) under heating. In addition, the WPU films demonstrated good antibacterial performance against Staphylococcus aureus and Escherichia coli after chlorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号