首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Reaction of Rhenium(VII) Oxide with 1,4-Dioxane. Re2O62-OH)2 · 3 C4H8O2— a Novel Oxide Hydroxide with Metal-(1,4-Dioxane) Bonds The reaction of Re2O7 with 1,4-dioxane in the presence of small amounts of H2O yields the compound Re2O6(OH)2 · 3(1,4-dioxane). It crystallizes in the triclinic space group P¯1 with a = 10.907(3), b = 12.875(4), c = 7.943(2) Å; α = 108.64(2), β = 103.00(2), γ = 102.29(2)°; Z = 2. The complete X-ray structure analysis (R = 2.9? ) shows the crystals to contain dimeric centrosymmetric Re2O6(OH)2-units with two bridging μ2-OH groups. The ligand spheres around Re are completed towards distorted octahedra by coordinated 1,4-dioxane molecules (one O donor per Re), the latter linking the dimeric units to endless chains. The rest of the 1,4-dioxane molecules are bonded to the OH-groups through hydrogen bridges and have no contact to Re. Mean bond distances are: Re? O(bridge) 2.065 (2.059…2.070(4)) Å, Re? O(1,4-dioxane) 2.478 (2.469 and 2.486(5)) Å, Re? O (terminal) 1.707 (1.694…1.720(5)) Å.  相似文献   

2.
Synthesis and Crystal Structures of (Ph3PNPPh3)2[Re2Br10] and (Ph4P)[Re2Br9] Depending on the molar ratio by reaction of [n-Bu4N]2[ReBr6] with the Lewis acid BBr3 in dichloromethane the bioctahedral complexes [n-Bu4N]2[Re2Br10] and [n-Bu4N][Re2Br9] are formed. The X-ray structure determination on (Ph3PNPPh3)2[Re2Br10] (monoclinic, space group C 2/c, a = 20.007(4), b = 15.456(5), c = 24.695(4) Å, β = 107.53(2)°, Z = 4) reveals a centrosymmetric edge-sharing complex anion with approximate D2h symmetry and mean terminal and bridging Re–Br bond lengths of 2.453 (equatorial), 2.482 (axial) and 2.591 Å, respectively, and a Re–Re distance of 3.880 Å. (Ph4P)[Re2Br9] (triclinic, space group P 1, a = 11.062(2), b = 12.430(3), c = 13.163(5) Å, α = 72.94(2), β = 68.47(2), γ = 82.09(2)°, Z = 2) contains a confacial bioctahedral anion with nearly D3h symmetry and mean terminal and bridging Re–Br distances of 2.460 and 2.536 Å, respectively, and a Re–Re distance of 2.780 Å.  相似文献   

3.
The title compound, [Re2O3(C19H20N2O2)2], is a hexacoordinate complex containing an [Re2O3]4+ core with a linear O=Re—O—Re=O bridge. The distorted octahedral coordination of the ReV atom is achieved by an N2O2 donor set from the tetradentate imine–phenol ligand. The overall charge of the compound is neutral due to deprotonation of the phenol groups, and the terminating and bridging O atoms. The Re=O and Re—O bond distances of the [Re2O3]4+ core are 1.699 (4) and 1.911 (1) Å, respectively. The Re—O and Re—N bond distances of the equatorial plane are in the ranges 2.024 (4)–2.013 (4) and 2.128 (5)–2.120 (5) Å, respectively.  相似文献   

4.
Reactions of the tetrahydrofuran adduct Re2Br2(CO)6(THF)2 with some phosphorous- and nitrogen-containing donors under mild conditions are reported, which led to the formation of substituted products of tricarbonylrhenium(I). Bromide abstraction from the THF adduct by secondary amines and CS2 produced the dithiocarbamato derivatives Re(S2CNR2)(CO)3(HNR2) whose behaviour in solution with CO was also investigated. Mass spectral data for some of the substituted products have been measured. The title compound crystallizes in the space group P21/n with cell constants a = 8.661(2), b = 11.251(3), c = 11.424(3) Å and β = 110.36(2)°, U = 1043.67 Å3 and Dcalc = 2.686 g cm?3, Z = 2. The molecule consists of a planar Re2Br2 moiety, as demanded by symmetry. The two THF groups are on opposite sides of this plane and the three CO groups around each rhenium atom are arranged in a fac arrangement. The unique ReBr distances are 2.642(5) and 2.644(4)Å, while the ReO distance is 2.129(31) Å. The ReBrRe and BrReBr angles are 97.3(2) and 82.7(1)°, respectively. The Re?Re nonbonding distance is 3.967(3) Å. The THF ligands consist of a nearly planar C4 fragment (maximum deviation from planarity 0.06 Å), while the oxygen is 0.348 Å out of that plane, the angle defined by the C4 plane and the COC fragment of the THF ligand being 24.99°. Final values of the discrepancy indices are R(F) = 0.074 and Rw(F) = 0.095.  相似文献   

5.
6-nitrohexene-1 (6-NH-1) undergoes metathesis in the presence of 16 wt.% Re2O7/Al2O3/R4M and 3 wt.% Re2O7/Al2O3-SiO2/R4M (where R = methyl, ethyl; M = Sn or Pb) catalysts. The system containing alumina as a support is more active. Tetramethyltin (TMT) and tetraethyllead (TEL) used as co-catalysts, exhibited similar activating effect which was greater than with tetraethyltin (TET). The best results were obtained when the Re:Sn(Pb) and 6-NH-1:Re ratios were equal, respectively, to 1:1 and 10:1. The alumina-silica supported catalysts activity can be enhanced by doping the support with very small amounts of molybdenum ions.  相似文献   

6.
Single crystals of PbRe2O6 were obtained from a stoichiometric mixture of PbO and ReO3 at 500°C. The structure was determined by Patterson methods from X-ray four-circle diffractometer data using 2 270 (392 unique) reflections; RW(F) = 0.036. PbRe2O6 crystallizes in the trigonal space group R3m with a = 10.359(6) Å, c = 11.092(6) Å and Z = 9. The compound is isotypic with the trigonal modification of PbNb2O6 and contains an Re2O10 unit. Unlike other compounds containing this species, there is no metal-metal bonding.  相似文献   

7.
A Polyphosphide with Rhenium Clusters: Synthesis and Crystal Structure of Re6P13 Microcrystalline Re6P13 was prepared by heating the elemental components in the presence of iodine. Single crystals were obtained by reaction of the components in molten tin. They are rhombohedral, R3 , with the hexagonal cell dimensions: a = 15.665(9), c= 8.320(2) Å, Z = 6. The structure was determined and refined from single-crystal data(R = 0.053). The Re atoms are coordinated by six P atoms in distorted octahedral configuration. Four edge-sharing octahedra are distorted in such a way that Re? Re bonds (2.76 to 2.94 Å) are formed. All P atoms are tetrahedrally coordinated by Re and P atoms. The P atoms form six-membered rings, four membered chains, and pairs. One P atom has only Re neighbors. The crystal structure of Re6P13 is discussed together with the structures of related compounds.  相似文献   

8.
The reaction between PCl3 and ReCl5 yielded at 200 °C the ionic tetrachlorophosphonium dirhenium nonachloride, (PCl4)[Re2Cl9]. Single crystal X-ray diffraction analysis revealed a monoclinic unit cell: a = 8.616(3) Å, b = 10.449(4) Å, c = 9.397(3) Å, β = 99.72(3)°, V = 833.9(5) Å3, Z = 2, sp. gr. P21/m, wR2 = 0.1083 and R1 = 0.0527. The ionic compound is built from tetrahedra PCl4+ and face-sharing bioctahedra Re2Cl9. The Re–Re distance, 2.724 Å, indicates the presence of direct Re-Re interaction.  相似文献   

9.
The solid‐state‐melt reaction of (NH4)2[Re2F8] · 2H2O with 2‐hydroxypyridine (2‐HOpy) produced dark‐red Re2(2‐Opy)4F2 ( 1 ). This air‐stable compound was obtained in crystalline form as 1· CHCl3. It was characterized in the solid state by single‐crystal X‐ray diffraction and in solution by UV/Vis spectroscopy and cyclic voltammetry. 1· CHCl3 forms triclinic crystals with α = 8.3254(5) Å, b = 8.5563(5) Å, c = 11.6784(8) Å, α = 82.723(3)°, β = 75.769(3) °, γ = 64.407(2) °. The Re–Re and Re–F distances were 2.2091(7) and 2.115(6) Å, respectively. The molecule is isostructural with the corresponding chloro derivative.  相似文献   

10.
The reactions of [Re(CO)5Cl] with the ligands tpy (2,2′:6′,2″-terpyridine), py3N {tris(2-pyridyl)-amine}, py3CH {tris(2-pyridyl)methane}, and py3P {tris(2-pyridyl)phosphine} in toluene solution realize compounds with the general formulation [Re(ligand)(CO)3Cl] in which the tripyridyl ligands are bidentate. X-ray structural determinations of fac-[Re(typ)(CO)3Cl].H2O and fac-[Re(py3N)(CO)3Cl] confirm these assignments. [Re(tpy)(CO)3Cl].H2O (C18H13ClN3O4Re) is monoclinic, space group P21/n, with cell dimensions a = 7.432(2) Å, b = 17.016(4) Å, c = 14.466(2) Å, β = 93.51(2)°, and Z = 4; full-matrix least-squares refinement on 2435 reflections with I ? 2.5σ(I) converged to a final R = 0.028 and Rw = 0.029. [Re(py3N)(CO)3Cl] (C18H12ClN4O3Re) is triclinic, space group P1 with cell dimensions a = 13.761(2) Å, b = 14.636(6)Å, c = 11.110(2) Å, α = 110.70(2)°, β = 102.45(2)°, γ = 107.48(2)°, and Z = 4; full-matrix least-squares refinement on 3459 reflections with I ? 2.5σ(I) converged to a final R = 0.038 and Rw = 0.039. If the synthetic procedure is undertaken under irradiation by visible light, for the ligand py3N a species [Re(py3N)(CO)2Cl] (characterized by infrared spectroscopy and conductance measurements) is also formed, in which the ligand py3N is tridentate. No analogous tridentate species is formed with the ligands tpy or py3P, although there is evidence that it also forms for py3CH.  相似文献   

11.
Rb6Mn2O6 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Mn3O4, RbN3 and RbNO3) were heated in a special regime up to 500 °C and annealed at this temperature for 75 h in silver crucibles. Single crystals have been grown by annealing a mixture with a slight excess of rubidium components at 450 °C for 500 h. According to the single crystal structure analysis, Rb6Mn2O6 is isotypic to K6Mn2O6, and crystallizes in the monoclinic space group P21/c with a = 6.924(1) Å, b = 11.765(2) Å, c = 7.066(1) Å, β = 99.21(3)°, 2296 independent reflections, R1 = 5.23 % (all data). Manganese is tetrahedrally coordinated and two tetrahedra are linked by sharing a common edge, forming a dimer [Mn2O6]6−. The magnetic behavior has been investigated.  相似文献   

12.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

13.
The crystal structure of the known compounds Ln5Re2O12 (Ln = Y, Gd, Dy–Lu) and the new isotypic terbium rhenate Tb5Re2O12 was determined from X‐ray data of a twinned crystal of Ho5Re2O12: B2/m, a = 1236.5(4) pm, b = 748.2(2) pm, c = 563.8(1) pm, γ = 107.73(3)°, Z = 2, R = 0.034 for 379 structure factors and 37 variable parameters. The rhenium atoms (oxidation number +4.5) have octahedral oxygen coordination. These ReO6 octahedra share edges, thus forming infinite strings with alternating short and long Re–Re distances: 243.6(2) and 320.1(2) pm. Of the three holmium positions two are surrounded by seven oxygen atoms and the third one has octahedral oxygen coordination. The crystal structure of Pr3ReO8 was refined from single‐crystal X‐ray data: P21/a, a = 1498.0(2) pm, b = 749.09(8) pm, c = 610.48(9) pm, γ = 110.39(1)°, R = 0.017 for 2082 F values and 110 variable parameters. It is isotypic with a structure first determined for Sm3ReO8. The new compounds Pr3Re2O10 and Pr4Re2O11 were prepared by reaction of elemental praseodymium with the metaperrhenate Pr(ReO4)3. They were characterized through their X‐ray powder diagrams. Pr3Re2O10 was found to be monoclinic: a = 778.47(9) pm, b = 773.62(9) pm, c = 706.10(8) pm, β = 114.77(1)°. It is isotypic with La3Os2O10 and La3Re2O10. Pr4Re2O11 crystallizes with Nd4Re2O11 type structure with the tetragonal lattice constants a = 1272.49(3) pm, c = 562.29(2) pm. The compounds Nd4Re2O11 and Sm4Re2O11 are confirmed. The magnetic properties of Ho5Re2O12, Tb5Re2O12, Pr3Re2O10, Pr4Re2O11, Nd4Re2O11, and Sm4Re2O11 were investigated with a Faraday balance. None of these compounds shows magnetic order above 200 K.  相似文献   

14.
《Solid State Sciences》2004,6(1):109-116
The exploration of the CsReSBr system, in order to identify new phases based on octahedral cluster anions, has produced single crystals of Cs4Re6S8Br6 (1) (trigonal, space group P-6c2, a=9.7825 (3) Å, c=18.7843 (5) Å, V=1556.77 (1) Å3, Z=2, density=5.09 g cm−3, μ=36.07 mm−1) and Cs2Re6S8Br4 (2) (monoclinic, space group P21/n, a=6.3664 (1) Å, b=18.4483 (4) Å, c=9.3094 (2) Å, β=104.2618 (8)°, V=1059.69 (4) Å3, Z=2, density=6.14 g cm−3, μ=45.83 mm−1). These two compounds have been obtained by high-temperature solid state route. Their structures have been solved and refined from single crystal X-ray diffraction data. The structure of Cs4Re6S8Br6 presents isolated anionic cluster units inscribed in a (Cs+)12 cuboctahedron and the one of Cs2Re6S8Br4 exhibits ReSi-a,a-iRe inter-unit bridges. The framework of the latter presents then a strongly 1-D character.  相似文献   

15.
ReV‐Phthalocyaninates and ReV‐Tetraphenylporphyrinates: Synthesis, Properties, and Crystal Structure Hexa‐coordinated ReV phthalocyaninates (pc) and ReV tetraphenylporphyrinates (tpp) of the type [Re(O)(X)p] (p: pc, tpp) with X = OCH3, ReO4, Cl/pc, F/pc, OH/tpp, [{Re(O)p}2(μ‐O)] and (cat)trans[Re(O)2p] (cat: nBu4N, Et4N/tpp) have been isolated and characterised by their UV‐Vis‐NIR, IR and resonance Raman (RR) spectra. In the RR spectra, the intensity of the (Re=O) and (Re–X) stretching vibrations (ν(Re=O/–X)) in [Re(O)(X)p] and [{Re(O)p}2(μ‐O)] is selectively enhanced with excitation in coincidence with O → Re–CT between ca 19000 and 22000 cm–1. In accordance to selection rules, data of ν(Re=O/–X) compare well with those of the complementary IR spectra. Because of the trans influence ν(Re=O) depends on the axial ligand X, ranging from 940 to 1010 cm–1. The crystallographic characterization of [Re(O)(ReO4)tpp] · CHCl3 ( 1 ), [{Re(O)tpp}2(μ‐O)] · py ( 2 ), (nBu4N)trans[Re(O)2tpp] ( 3 ), and (Et4N)trans[Re(O)2tpp] · 2 H2O ( 4 ) is described. The tpp centered Re atom is in a distorted octahedron of four N atoms of the porphyrinate and two axial O atoms in a mutual trans position. Average Re–N distances are 2.062 Å in 1 , 2.086 Å in 2 , 2.089 Å in 3 , and 2.082/2.086 Å in 4 . The Re–O distance of the terminal rhenyl group varies from 1.64(1) Å ( 1 ), 1.73(1)/1.70(1) Å ( 2 ) to 1.80(1) Å ( 4 ), that of the monodentate rhenate(VII) from 1.70(1) to 1.75(1) Å. The Re–O distances in the bridge of the linear O=Re–O–Re=O skeleton in 2 are 1.95(1)/1.89(1) Å. In 1 , with a bent O=Re–O^ ReO3 moiety (∢(Re–O^ReO3) = 143(1)°) and a mostly ionic coordinated rhenate(VII), these distances differ significantly (2.20(1) Å vs 1.75(1) Å). The porphyrinate in 1 is saucer‐shaped with a distal rhenate(VII), and the tpp centered Re atom is displaced by 0.31 Å out of the (N)4 plane towards the rhenyl‐O atom. The distorted porphyrinates in 2 are rotated by 30.4(4)°, and the Re atoms are 0.1 Å out of their (N)4 planes towards the terminal O atoms. In 3 and 4 the porphyrinates are almost planar with the Re atom in their centre.  相似文献   

16.
Reaction of Rhenium(VII) Oxide with 1,4-Dioxane – Crystal Structure of Re2O7(OH2)2 · 2(1,4-Dioxane) By solvolysis of polymeric Re2O7 with 1,4-dioxane in the presence of small amounts of H2O two products of compositions Re2O6(OH)2 · 3(1,4-dioxane) ( 1 ) and Re2O7 · 2H2O · 2(1,4-dioxane) ( 2 ) are formed. From a complete X-ray single-crystal structure analysis 2 could now be characterized structurally (monoclinic, space group P21/c, a = 6.828(3) Å, b = 9.530(2) Å, c = 26.421(8) Å, β = 91.71(3)°, Z = 4). The compound is important as a convenient precursor for the preparation of pure rhenium trioxide. It is to be formulated as Re2O7(OH2)2 · 2(1,4-dioxane) and contains, contrary to 1 , no 1,4-dioxane coordinated to Re. The crystalline phase consists of a supramolecular arrangement of Re2O7(OH2)2 units as in “solid perrhenic acid” and of 1,4-dioxane molecules associated through O? H …? O hydrogen bridges. Analogous to dirhenium heptoxide and to solid perrhenic acid one of the rhenium atoms is in tetrahedral, the other is in distorted octahedral coordination.  相似文献   

17.
The crystal structures of two new oxides, BiReO4 and BiRe2O6, have been determined by single-crystal X-ray methods using an Enraf-Nonius CAD-4F diffractometer. BiReO4 crystallizes as red metallic needles in the space group Cmcm, cell dimensions a = 3.839(1) Å, b = 14.914(2) Å, c = 5.534(1) Å, Z = 4. The structure consists of sheets of corner-shared octahedra (composition ReO4) linked by Bi atoms (R = 2.55%). BiRe2O6 crystallizes as black metallic plates in the space group C2/m, cell dimensions a = 5.516(1) Å, b = 4.906(1) Å, c = 8.384(1) Å, β = 106.71(1)°, Z =2. The structure consists of layers containing Re2O10 units linked together by corner sharing of the octahedra, alternating with layers of Bi atoms (R = 2.61%). The structure is disordered due to the random stacking of the Re layers. The Re---Re distance of 2.5 Å in the Re2O10 unit is comparable to that found in similar compounds. Both compounds exhibit stereochemically active lone pairs.  相似文献   

18.
Capability of [ReIII(tu-S)6]Cl3, where tu = thiourea, as a precursor to other ReIII complexes by ligand substitution in aqueous medium is studied. For the decomposition of [Re(tu-S)6]Cl3, experiments suggest pseudo first order kinetics and observed rate constants vary from 1.3 × 10–2 to 9.6 × 10–2 min–1 in the pH range 2.80–5.04. Experiments in presence of incoming ligand (ethylendiaminetetraacetic acid or diethylentriaminepentaacetic acid) show that ligand substitution is significantly slower than decomposition of the precursor, even when pH and temperature are modified. Similar results were obtained working with [ReIII(Metu-S)6]Cl3, where Metu = N-methylthiourea. Molecular structure of [ReIII(Metu-S)6](PF6)3 · H2O was determined by single crystal X-ray diffractometry. The coordination polyhedron around the Re ion is a distorted octahedron. The six methylthiourea ligands are bonded to the metal through the sulfur atoms [bond lengths range from 2.409(2) to 2.451(2) Å].  相似文献   

19.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

20.
K_6CrNb_(15)O_(42)crystallizes in the hexagonal system with a=9.126(3)A,c=12.068(3)A,V=870.4(5)A~3,and space group P6_2/mcm,Z=1.The structure was solved using direct method andFourier Techniques.Of the 829 unique reflections measured by counter techniques,448 with I≥3σ(I)were used in the least-squares refinement of the model to R=0.034(R_w=0.044).The structureof KoCrNb_(15)O_(42)may be described as consisting of corner-shared and edge-shared octahedra,the ringunits composed of six octahedra of Nb(1)are corner-shared one another along the c-axis to formhexagonal column octahedra chains which are connected by K~+ and octahedra of Nb(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号