首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Two interpenetrating 2 [Si 20 30− ] polyanions with naphthalene-like Si1010− building blocks (see picture) characterize the“nonclassical” Zintl phase Sr13Mg2Si20, which is formed from the elements at 1230–1240 K. The ecliptical stacking of the Si1010− units leads to one-dimensional conductivity along the stacking direction.  相似文献   

2.
3.
Phosphonium Salts with Hydrogen Dihalide Anions HCl2?, HBr2?, HI2?, or HBrCl? Phosphonium hydrogen dihalides [R3PR′][XHY] (X = Y = Cl, Br, I; X = Br, Y = Cl) resp. [R3PH]HBr2 are obtained as extremely hydrolyzable crystals by reaction of phosphonium halides or tertiary phosphanes with hydrogen halide. According to IR spectroscopic results the solid compounds mostly contain anions [XHX]? with symmetric hydrogen bonds. In solution 1H NMR measurements show a slight (X = Cl, Br) or considerable (X = I) dissociation according to HX2? ? X? + HX. On heating the solid compounds decompose with formation of hydrogen halide and [R3PR′]X or [R3PH]X. In this process the hydrogen bromidechlorides [R3PR′][BrHCl] exclusively eliminate HCl. NMR studies (1H und 31P) with solutions containing [R3PH]HBr2 (R = phenyl, 1-naphtyl) or HBr and Ph3P in varying molar ratios show that a fast proton exchange between the competing Lewis bases R3P and Br? exists.  相似文献   

4.
Solely on the basis of Raman spectra and quantum chemical calculations, the previously unknown cluster anion Si94− (structure shown) was characterized and its structure determined. The anion is formed as a component of solid phases by the thermal decomposition of alkali metal monosilicides.  相似文献   

5.
The crystal structures of four substituted‐ammonium dichloride dodecachlorohexasilanes are presented. Each is crystallized with a different cation and one of the structures contains a benzene solvent molecule: bis(tetraethylammonium) dichloride dodecachlorohexasilane, 2C8H20N+·2Cl·Cl12Si6, (I), tetrabutylammonium tributylmethylammonium dichloride dodecachlorohexasilane, C16H36N+·C13H30N+·2Cl·Cl12Si6, (II), bis(tetrabutylammonium) dichloride dodecachlorohexasilane benzene disolvate, 2C16H36N+·2Cl·Cl12Si6·2C6H6, (III), and bis(benzyltriphenylphosphonium) dichloride dodecachlorohexasilane, 2C25H22P+·2Cl·Cl12Si6, (IV). In all four structures, the dodecachlorohexasilane ring is located on a crystallographic centre of inversion. The geometry of the dichloride dodecachlorohexasilanes in the different structures is almost the same, irrespective of the cocrystallized cation and solvent. However, the crystal structure of the parent dodecachlorohexasilane molecule shows that this molecule adopts a chair conformation. In (IV), the P atom and the benzyl group of the cation are disordered over two sites, with a site‐occupation factor of 0.560 (5) for the major‐occupied site.  相似文献   

6.
7.
A novel nitride, Sr2−yEuyB2−2xSi2+3xAl2−xN8+x (x≃ 0.12, y≃ 0.10) (distrontium europium diboron disilicon dialuminium octanitride), with the space group P2c, was synthesized from Sr3N2, EuN, Si3N4, AlN and BN under nitrogen gas pressure. The structure consists of a host framework with Sr/Eu atoms accommodated in the cavities. The host framework is constructed by the linkage of MN4 tetrahedra (M = Si, Al) and BN3 triangles, and contains substitutional disorder described by the alternative occupation of B2 or Si2N on the (0, 0, z) axis. The B2:Si2N ratio contained in an entire crystal is about 9:1.  相似文献   

8.
Are the ‘Textbook Anions’ O2?, [CO3]2?, and [SO4]2? Fictitious? Experimental second electron affinities are still unknown for the title anions. It will be shown by means of quantum chemical ab initio calculations that these dianions are unstable with respect to spontaneous ionization. They all must be designated as non-existent.  相似文献   

9.
Reactions of ZnI2L2 (where L=[HC(PPh2NPh)]) with solutions of the Zintl phase K4Ge9 in liquid ammonia lead to retention of the Zn−Zn bond and formation of the anion [(η4‐Ge9)Zn−Zn(η4‐Ge9)]6−, representing the first complex with a Zn−Zn unit carrying two cluster entities. The trimeric anion [(η4‐Ge9)Zn{μ211Ge9)}Zn(η4‐Ge9)]8− forms as a side product, indicating that oxidation reactions also take place. The reaction of Zn2Cp*2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with K4Ge9 in ethylenediamine yielded the linear polymeric unit {[Zn[μ241Ge9)]}2− with the first head‐to‐tail arrangement of ten‐atom closo ‐clusters. All anions were obtained and structurally characterized as [A (2.2.2‐crypt)]+ salts (A =K, Rb). Copious computational analyses at a DFT‐PBE0/def2‐TZVPP/PCM level of theory confirm the experimental structures and support the stability of the two hypothetical ten vertex cluster fragments closo ‐[Ge9Zn]2− and (paramagnetic) [Ge9Zn]3−.  相似文献   

10.
A procedure to calculate the quantum mechanical transition probability of a unimolecular primary chemical process, A?A + e? is investigated for the circumstance where A? and A have different numbers of vibrational and rotational degrees of freedom (one is linear, the other not). A procedure is introduced to deal with the coupling between the vibrational and rotational motions. The proposed method was applied to calculating the lifetimes of CO2˙? and N2O˙? in the gas phase. The geometry optimizations and frequency calculations for CO2, CO2˙?, N2O, and N2O˙? are performed at HF, MP2, and QCISD(T) levels with 6-31G* or 6–31+G* basis sets, in order to obtain reliable geometric and spectroscopic information on these systems. Lifetimes are calculated for several of the lower vibrational–rotational states of the anions, as well as for the Boltzmann distribution of states at 298 K. The lifetime of the lowest vibrational–rotational state of CO2˙?, is 1.03 × 10?4 s, and of the lowest vibrational state with rotational levels weighted by Boltzmann distribution at 298 K, 1.50 × 10?4 s. These values are in good agreement with the experimental number, 9.0 ± 2.0 × 10?5 s, and support the experimental evidence that CO2˙? was formed in its ground vibrational level by the techniques used. The lifetime of CO2˙? calculated with Boltzmann distribution over its vibrational and rotational levels at 298 K, is 1.51 × 10?5 s. There are no direct measurements of the lifetime of N2O˙?, but it was estimated to be greater than 10?4 s from experimental evidence. The predicted lifetimes of N2O˙?, at its lowest vibrational–rotational state (0 K) and lowest vibrational state with rotational levels weighted by the Boltzmann distribution at 298 K, are 238 and 19.1 s, respectively. The lifetime of N2O˙? at thermal equilibrium at 298 K is 6.66 × 10?2 s, indicating that electron loss from the excited vibrational states of N2O˙? is significant. This study represents the first theoretical investigation of CO2˙? and N2O˙? lifetimes. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Total syntheses of (?)‐isoschizogamine and (?)‐2‐hydroxyisoschizogamine are described. The synthesis employs two asymmetric Michael additions to establish chiral centers at C7 and the quaternary carbon C20. Regioselective reduction of the methylthioiminium cation rather than the enamine generates an isoschizogamine‐type pentacyclic skeleton. Acidic hydrolysis of the isoschizogamine‐type intermediate in the absence of oxygen provides natural (?)‐isoschizogamine. Conducting the reaction in the presence of oxygen leads to a multistep oxidative hydrolysis cascade that affords unnatural (?)‐2‐hydroxyisoschizogamine.  相似文献   

12.
13.
A facile hybrid assembly between Ti3C2Tx MXene nanosheets and (3‐aminopropyl) triethoxylsilane‐modified Si nanoparticles (NH2?Si NPs) was developed to construct multilayer stacking of Ti3C2Tx nanosheets with NH2?Si NPs assembling together (NH2?Si/Ti3C2Tx). NH2?Si/Ti3C2Tx exhibits a significantly enhanced lithium storage performance compared to pristine Si, which is attributed to the robust crosslinking architecture and considerably improved electrical conductivity as well as shorter Li+ diffusion pathways. The optimized NH2?Si/Ti3C2Tx anode with Ti3C2Tx: NH2?Si mass ratio of 4 : 1 displays an enhanced capacity (864 mAh g?1 at 0.1 C) with robust capacity retention, which is significantly higher than those of NH2?Si NPs and Ti3C2Tx anodes. Furthermore, this work demonstrates the important effect of the MXene‐based electrode architecture on the electrochemical performance and can guide future work on designing high‐performance Si/MXene hybrids for energy storage applications.  相似文献   

14.
The oxonitridoaluminosilicate chloride Pr10[Si10?xAlxO9+xN17?x]Cl was obtained by the reaction of praseodymium metal, the respective chloride, AlN and Al(OH)3 with “Si(NH)2” in a radiofrequency furnace at temperatures around 1900 °C. The crystal structure was determined by single‐crystal X‐ray diffraction (Pbam, no. 55, Z = 2,a = 10.5973(8) Å, b = 11.1687(6) Å, c = 11.6179(7) Å, R1 = 0.0337). The sialon crystallizes isotypically to the oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl, which represent a new layered structure type. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/Noccupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The Si and Al atoms were refined equally distributed on their three crystallographic sites, due to their poor distinguishability by X‐ray analysis. The tetrahedra layers of the structure consist of condensed [(Si,Al)N2(O,N)2] and [(Si,Al)N3(O,N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compound was derived from electron probe micro analyses (EPMA).  相似文献   

15.
16.
17.
18.
Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl?NaCl, 3 LiCl?2 KCl, LiCl?RbCl and 3 LiCl?2 CsCl) at 873 K. Cyclic voltammetry was used to determine the reduction potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin‐layer spectroelectrochemistry were used to obtain the number of electrons transferred, reduction potentials and diffusion coefficients for Eu3+ in each eutectic melt. The reduction potentials determined by thin‐layer spectroelectrochemistry were essentially the same as those obtained using cyclic voltammetry. The diffusion coefficient for Eu3+ was the largest in the 3 LiCl?NaCl melt, showed a negative shift in the 3 LiCl?2 KCl melt, and was the smallest in the LiCl?RbCl and 3 LiCl?2 CsCl eutectic melts. The basic one‐electron reversible electron transfer for Eu3+/2+ was not affected by melt composition.  相似文献   

19.
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4N+)2[MIVO(Pc4?)]2? (M=Ti, V) and (Bu3MeP+)2[MIVO(Pc4?)]2? (M=Ti, V) with [MIVO(Pc4?)]2? dianions were synthesized and characterized. Reduction of MIVO(Pc2?) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4N+ or Bu3MeP+ is exclusive to the phthalocyanine centers, forming Pc4? species. During reduction, the metal +4 charge did not change, implying that Pc is an non‐innocent ligand. The Pc negative charge increase caused the C?N(pyr) bonds to elongate and the C?N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn–Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q‐bands were observed in the UV/Vis/NIR when MIVO(Pc2?) was reduced to [MIVO(Pc . 3?)] . ? and [MIVO(Pc4?)]2?. From magnetic measurements, [TiIVO(Pc4?)]2? was found to be diamagnetic and (Bu4N+)2[VIVO(Pc4?)]2? and (Bu3MeP+)2[VIVO(Pc4?)]2? were found to have magnetic moments of 1.72–1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号