首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Formation of the “Superoctahedral” Heteropolyanion [Ni(TaF6)6]4? through Oxidation of Tantalum with Ammonium Fluoride at the Monel-Container Wall A few single crystals of (NH4)4[Ni(TaF6)6] are obtained besides (NH4)[TaF6] as the main product of the reaction of (NH4)F with tantalum powder in an He-are-welded Monel metal container at 400°C. The crystal structure (trigonal, R-3c (Nr. 167), Z = 6, a = 1723,0(2); c = 2166,6(2) pm; R1 = 0,0303, WR2 = 0,0609) contains the superoctahedral heteropolyanion [Ni(TaF6)6]4? and (NH4)+ ions; it may be recognized as a derivative structure of the K4CdCl6 type according to (NH4)4[Ni(TaF6)6]?K4[Cd(Cl)6].  相似文献   

2.
Derivatives of the Fluorite Type: [Fe(NH3)6][TaF6]2 and [Ni(NH3)6][TaF6]2 Light blue single crystals of [Fe(NH3)6][TaF6]2 and [Ni(NH3)6][TaF6]2 are obtained from 36 : 1 : 6 molar mixtures of (NH4)F, iron/nickel and tantalum powders, respectively, in sealed Monel metal ampoules at 400 °C. They both crystallize isotypic with [Co(NH3)6][PF6]2 (cubic, Fm-3m, Z = 4, a = 1259.0(2)/1260.4(2) pm) in a structure that can be derived from the basic fluorite-type of structure according to [Ca][F]2≡[Fe(NH3)6][TaF6]2, for example.  相似文献   

3.
Two cyano-bridged compounds of novel dodecanuclear cluster anion [Re12CS17(CN)6] with Ni2+ cations were synthesized, namely, one-dimensional polymer of the composition [{Ni(NH3)4} {Ni(NH3)5}2Re12CS17(CN)6] · 7H2O (I) with a chain structure and [Ni(NH3)6]3[{Ni(NH3)4}3 {Re12CS17(CN)6}2] · 21H2O (II), containing the anionic dimeric complex [{Ni(NH3)4}3 {Re12CS17(CN)6}2]6?. The structures of both compounds were established by X-ray diffraction analysis. Crystals I are monoclinic, space group P2/n, a = 15.321(3), b = 12.635(2), c = 15.448(3) Å, β = 100.242(3)°, V = 2942.8(8) Å3, Z = 2. Crystals II are trigonal, space group R3, a = b = 19.7987(14), c = 28.8642(18) Å, V = 9798.6(12) Å3, Z = 3.  相似文献   

4.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

5.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

6.
New heteroatom polyoxovanadates (POVs) were synthesized by applying a water‐soluble high‐nuclearity cluster as new synthon. The [V15Sb6O42]6? cluster shell exhibiting D3 symmetry was in situ transformed into completely different cluster shells, namely, the α‐[V14Sb8O42]4? isomer with D2d and the β‐[V14Sb8O42]4? isomer with D2h symmetry. The solvothermal reaction of {Ni(en)3}3[V15Sb6O42(H2O)x] ? 15 H2O (x=0 or 1; en=ethylenediamine) in water led to the crystallization of [{Ni(en)2}2V14Sb8O42] ? 5.5 H2O containing the β‐isomer. The addition of [Ni(phen)3](ClO4)2 ? 0.5 H2O (phen=1,10‐phenanthroline) to the reaction slurry gave the new compound {Ni(phen)3}2[V14Sb8O42] ? phen ? 12 H2O with the α‐isomer. Both transformation reactions are complex due the change of symmetry, the chemical composition, and rearrangement of the VO5 square pyramids and Sb2O5 handle‐like moieties.  相似文献   

7.
Interaction of the tetrahedral chalcocyanide cluster anionic complexes of Re, K4[Re4Q4(CN)12] (Q=S, Se, Te), with Ni2+ cationic complexes with polydentate amines, such as ethylenediamine (En), diethylenetriamine (Dien), or triethylenetetraamine (Trien) was used to synthesize six novel complexes: [Ni(NH3)4(En)][{Ni(NH3)(En)2}Re4Te4(CN)12] · 2H2O, [{Ni(En)2}2Re4Se4(CN)12] · 3.5H2O, [Ni(NH3)3(Dien)]2[Re4Se4(CN)12] · 5.5H2O, [{Ni(NH3)2(Dien)}2Re4Te4(CN)12] · 2.5H2O. [Ni(NH3)2(Trien)][{Ni(NH3)(Trien)}Re4Se4(CN)12] · 2.5H2O, [{Ni(Trien)}2Re4S4(CN)12] · 3H2O. The complexes were studied by single-crystal X-ray diffraction analysis.  相似文献   

8.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

9.
The asymmetric unit of the title compound, dipotassium bis[hexaaquanickel(II)] tris(μ2‐methylenediphosphonato)tripalladium(II) hexahydrate, K2[Ni(H2O)6]2[Pd3{CH2(PO3)2}3]·6H2O, consists of half a {[Pd{CH2(PO3)2}]3}6− anion [one Pd atom (4e) and a methylene C atom (4e) occupy positions on a twofold axis] in a rare `handbell‐like' arrangement, with K+ and [Ni(H2O)6]2+ cations to form the neutral complex, completed by three solvent water molecules. The {[Pd{CH2(PO3)2}]3}6− units exhibit close Pd...Pd separations of 3.0469 (4) Å and are packed via intermolecular C—H...Pd hydrogen bonds. The [KO9] and [NiO6] units are assembled into sheets coplanar with (011) and stacked along the [100] direction. Within these sheets there are [K4Ni4O8] and [K2Ni2O4] loops. Successive alternation of the sheets and [Pd{CH2(PO3)2}]3 units parallel to [001] produces the three‐dimensional packing, which is also supported by a dense network of hydrogen bonds involving the solvent water molecules.  相似文献   

10.
Hydrothermally synthesized dipotassium gallium {hydrogen bis[hydrogenphosphate(V)]} difluoride, K2Ga[H(HPO4)2]F2, is isotypic with K2Fe[H(HPO4)2]F2. The main features of the structure are ([Ga{H(HPO4)2}F2]2−)n columns consisting of centrosymmetric Ga(F2O4) octahedra [average Ga—O = 1.966 (3) Å and Ga—F = 1.9076 (6) Å] stacked above two HPO4 tetrahedra [average P—O = 1.54 (2) Å] sharing two O‐atom vertices. The charge‐balancing seven‐coordinate K+ cations [average K—O,F = 2.76 (2) Å] lie in the intercolumn space, stabilizing a three‐dimensional structure. Strong [O...O = 2.4184 (11) Å] and medium [O...F = 2.6151 (10) Å] hydrogen bonds further reinforce the connections between adjacent columns.  相似文献   

11.
The rhenium cyano-bridged cluster complex with a composition of β-[{Ni(NH3)5}2{Re6Te8(CN)6}]−4H2O is obtained and structurally characterized. The compound pound crystallizes in the P $ P\bar 1 $ P\bar 1 triclinic space group with the unit cell parameters: a = 9.997(2) ?, b = 10.423(2) ?, c = 11.714(2) ?, α = 100.92(3)°, β = 111.87(3)°, γ = 98.05(3)°, V = 1082.1(4) ?3, Z = 1, d calc = 4.072 g/cm3. The rhenium atoms of the {Re6Te8} cluster core are coordinated by CN ligands to form the [Re6Te8(CN)6]4− cluster; two nitrogen atoms of CN ligands trans-positioned with respect to each other are coordinated to Ni atoms in the {Ni(NH3)5}2+ fragments to form the molecular complexes of [{Ni(NH3)5}2}Re6Te8(CN)6}]. The crystal structure is the H-bonded packing of these molecular complexes and crystallization water molecules.  相似文献   

12.
A rhenium cluster complex [Ni(NH3)6]2.5·NH4[Re12CS17(CN)6]·8.5H2O is obtained and structurally described. The compound crystallizes in the triclinic space group P-1 with the unit cell parameters: a = 11.0856(13) Å, b = 15.242(2) Å, c = 21.232(3) Å, α = 90.158(4)°, β = 97.439(4)°, γ = 90.051(4)°, V = 3557.3(8) Å3, Z = 2, d calc = 3.287 g/cm3. The crystal structure represents a packing of [Ni(NH3)6]2+ and NH4 + cations, [Re12CS17(CN)6]6? cluster anions, and crystallization water molecules bound by a system of hydrogen bonds.  相似文献   

13.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

14.
Preparation, Crystal Structure, Thermal Decomposition, and Vibrational Spectra of [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O is a suitable compound for the quantitative determination of beryllium. It can be obtained by reaction of aqueous solutions of carbonatoberyllate with [Co(NH3)6]Cl3. The crystal structure (trigonal‐rhombohedral, R3c (Nr. 161), a = 1071,6(1) pm, c = 5549,4(9) pm, VEZ = 5519(1) · 106 pm3, Z = 6, R1(I ≥ 2σ(I)) = 0,037, wR2(I ≥ 2σ(I)) = 0,094) contains [Co(NH3)6]3+‐ and [Be4O(CO3)6]6–‐ions, which are directly hydrogen bonded as well as with water molecules. The complex cations and anions occupy the positions of a distorted anti‐CaF2‐type. The thermal decomposition, IR and Raman spectra are presented and discussed.  相似文献   

15.
A re-interpretation and re-evaluation of single-crystal X-ray diffraction data of a previously reported ‘(NH4)2(NH3)[Ni(NH3)2Cl4]’ (J. Solid State Chem. 162 (2001) 254) give a new formula (NH4)2−2z[Ni(NH3)2]z[Ni(NH3)2Cl4] with z=0.152. This new formula results from defects in an idealized ‘(NH4)2[Ni(NH3)2Cl4]’ basic structure, where two adjacent NH4+ cations are replaced by one Ni(NH3)22+ unit. Cl anions from the basic structure complete the coordination sphere of the new Ni2+ to [Ni(NH3)2Cl4]2−.  相似文献   

16.
Two Fluoride Borates of Gadolinium: Gd2F3[BO3] and Gd3F3[BO3]2 By flux‐supported solid‐state reaction of Gd2O3 and GdF3 with B2O3 (flux: CsCl, molar ratio: 1 : 1 : 1 : 6, sealed tantalum capsule, 700 °C, 7 d) the new gadolinium fluoride borate Gd2F3[BO3] (monoclinic, P21/c; a = 1637.2(1), b = 624.78(4), c = 838.04(6) pm, β = 93.341(8)°; Vm = 64.418(6) cm3/mol, Z = 8) was obtained as colourless, prismatic, face‐rich single crystals. The four crystallographically different Gd3+ cations (CN = 9) are all capped square‐antiprismatically surrounded by fluoride and oxide anions, in which the latter represent always components of isolated trigonal planar [BO3]3— anions. The six crystallographically independent F anions all reside in more or less planar coordination of three Gd3+ cations. Thus the constitution of Gd2F3[BO3] can be described as a sequence of alternating layers each of the composition Gd[BO3] and GdF3 parallel (100), respectively. The crystal structures of Gd2F3[BO3] and the shortly published Gd3F3[BO3]2 (monoclinic, C2/c; a = 1253.4(1), b = 623.7(1), c = 836.0(1) pm, β = 97.404(6)°; Vm = 97.571(9) cm3/mol, Z = 4) are compared with each other. Due to the structural analogies between these two gadolinium fluoride borates, a disorder model of the boron atoms frequently found for Gd2F3[BO3] is able to be transferred to Gd3F3[BO3]2 as well.  相似文献   

17.
The syntheses of the two novel complexes [Ag{Mo/W(CO)6}2]+[F-{Al(ORF)3}2] (RF=C(CF3)3) are reported along with their structural and spectroscopic characterization. The X-ray structure shows that three carbonyl ligands from each M(CO)6 fragment bend towards the silver atom within binding Ag−C distance range. DFT calculations of the free cations [Ag{M(CO)6}2]+ (M=Cr, Mo, W) in the electronic singlet state give equilibrium structures with C2 symmetry with two bridging carbonyl groups from each hexacarbonyl ligand. Similar structures with C2 symmetry (M=Nb) and D2 symmetry (M=V, Ta) are calculated for the isoelectronic group 5 anions [Ag{M(CO)6}2] (M=V, Nb, Ta). The electronic structure of the cations is analyzed with the QTAIM and EDA-NOCV methods, which provide detailed information about the nature of the chemical bonds between Ag+ and the {M(CO)6}2q (q = −2, M = V, Nb, Ta; q = 0, M = Cr, Mo, W) ligands.  相似文献   

18.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

19.
Action of Ammonium Fluoride on Scandium: Synthesis and Crystal Structures of (NH4)3[ScF6] and [Cu(NH3)4]3[ScF6]2 The action of (NH4)F on scandium in copper ampoules yields either (NH4)3[ScF6] or ScF3 and a small quantity of [Cu(NH3)4]3[ScF6]2, respectively, depending upon the molar ratio of the educts (NH4)F : Sc (6 : 1 and 4 : 1, respectively) and temperature. (NH4)3[ScF6] crystallizes with the cryolite type of structure: monoclinic, P21/n, Z = 2; a = 650.0(2); b = 651.4(2); c = 949.0(2) pm; β = 90.40(2)°, [Cu(NH3)4]3[ScF6]2 is triclinic, P‐1, Z = 1; a = 821.1(2); b = 821.2(2); c = 822.7(2) pm; α = 90.04(3); β = 90.00(3); γ = 90.16(3)°. In its chemical behaviour against (NH4)F, scandium parallels aluminium rather than gallium.  相似文献   

20.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号