首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and Crystal Structure of [(Me3SiCH2)2InP(H)Ad]2 Reaction of (Me3SiCH2)3 In with AdPH2 (Ad = adamantyl) in the presence of AgNO3 leads to [(Me3SiCH2)2InP(H)Ad]2 1 in 30% yield. The crystal structure of 1 is discussed.  相似文献   

2.
Reactions of a Dibismuthane and of Cyclobismuthanes with Metal Carbonyls ‐ Syntheses of Complexes with R2Bi‐, RBi‐, Bi2‐ and Bin‐ligands (R = Me3CCH2, Me3SiCH2) Reactions of [Fe2(CO)9] with [(Me3CCH2)4Bi]2 or cyclo‐(Me3SiCH2Bi)n (n = 3 ‐ 5) lead to the complexes [(R2Bi)2Fe(CO)4], [RBiFe(CO)4]2[R = Me3CCH2, Me3SiCH2] and [Bi2Fe3(CO)9]. [Bi2{Mn(CO)2C5H4CH3}3] forms in a photochemical reaction of [Mn(CO)3C5H4CH3] with cyclo‐(Me3SiCH2Bi)n.  相似文献   

3.
The dimeric gallium-phosphorus compound [(Me3Si-CH2)2GaP(SiMe3)2]2 ( 1 ) was prepared from the 1:1 mole ratio lithium-halide elimination reaction of (Me3SiCH2)2GaP(SiMe3)2Ga(CH2SiMe3)2Cl with LiP-(SiMe3)2 in benzene solution and has been characterized through multinuclear solution NMR, partial elemental analysis, and single-crystal X-ray analysis. Compound 1 could not be obtained from the direct reactions of (Me3SiCH2)2GaCl with P(SiMe3)3 or LiP(SiMe3)2. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:147–150, 1998  相似文献   

4.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

5.
Facile Syntheses of Alkylaluminium and Alkylgallium Hydrides – Crystal Structures of [(Me3C)2GaH]3 and the Novel Sesquihydrides [(Me3C)2EH]2[EH2CMe3]2 (E = Al, Ga) The facile syntheses of some important, sterically highly shielded dialkylaluminium hydrides R2AlH [R = CMe3, CH(SiMe3)2] succeeded by the reaction of the corresponding trialkylaluminium compounds with the alane adduct AlH3 × NMe2Et in a 2 to 1 molar ratio. This route is not suitable for the synthesis of monoalkylaluminium dihydrides. An excess of AlH3 yielded the novel sesquihydride [(Me3C)2AlH]2[AlH2CMe3]2 ( 3 ) as the hydride richest compound which possesses an unprecedented heterocycle comprising four aluminium and four hydrogen atoms in the solid state. The dialkylgallium hydride (Me3C)2GaH ( 4 ) was formed on a similar route by the treatment of tri(tert‐butyl)gallane with the adduct GaH3 · NMe2Et. As shown by a crystal structure determination, compound 4 is a trimer in the solid state possessing a Ga3H3 heterocycle. A gallium sesquihydride analogous to compound 3 , [(Me3C)2GaH]2[GaH2CMe3]2 ( 5 ), was formed on employing an excess of GaH3.  相似文献   

6.
Novel Syntheses of Me2SbX (X = Cl, I) and Crystal Structures of Me2SbI and [(Me3Si)2CH]2SbCl The crystal structures of Me2SbI (Me = CH3) and [(Me3Si)2CH]2SbCl have been determined by X‐ray methods. Both molecules are pyramidal. The Me2SbI molecules are associated to chains through short intermolecular Sb…I distances (366,7(1) pm) with linear I–Sb…I units (171,87(4)°) and bent Sb–I…Sb bridges (116,83(3)°).  相似文献   

7.
The dinuclear molecule of [(Me3SiCH2)Cl2Sn]2(CH2)3 adopts an extended conformation and features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angles of approximately 128 °. The distortions are ascribed to the influence of intermolecular Sn···Cl interactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

9.
Influence of the Ring Atoms on the Structure of Triel‐Pentel Heterocycles – Synthesis and X‐Ray Crystal Structures of [Me2InAs(SiMe3)2]2 and [Me2InSb(SiMe3)2]3 Triel‐pentel heterocycles [Me2InE(SiMe3)2]x have been prepared by dehalosilylation reactions from Me2InCl and E(SiMe3)3 (E = As, x = 2; E = Sb, x = 3) and characterised by NMR spectroscopy and by X‐ray crystal structure analyses. In addition the X‐ray crystal structures of [Me2GaAs(SiMe3)2]2 and [Me2InP(SiMe3)2]2 are reported. The compounds complete a family of 13 identically substituted heterocycles [Me2ME(SiMe3)2]x (M = Al, Ga, In; E = N, P, As, Sb, Bi; x = 2, 3), whose structures were investigated depending on the ring atoms M and E. The tendencies that have been observed concerning the ring sizes can be explained by the interplay of the atomic radii of the central atoms and the sterical demand of the ligands. After a formal separation of the M–E bonds in σ bonds and dative bonds the characteristic differences and trends in the endocyclic and exocyclic bond angles of both centres M and E can be interpreted on the basis of a simple Lewis acid/base adduct model.  相似文献   

10.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

11.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

12.
Synthesis and Structures of the Dinuclear Nitrido Complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] with M = Sn and Zr The water sensitive complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] (M = Sn ( 1 ) und Zr ( 2 )) are obtained in dichloromethane from [ReNCl2(PMe2Ph)3] and the acetonitrile adducts of SnCl4 or ZrCl4. The compounds crystallize as dichloromethane solvate isotypically with [(Me2PhP)3(MeCN)ClRe≡N–TiCl5] · CH2Cl2 in the space group P21/n. From toluene crystallize monoclinic crystals of 1 · MeCN · C7H8. In the diamagnetic complexes 1 and 2 an anion [MCl5] coordinates to the nitrido ligand of the cationic complex [ReNCl(MeCN)(PMe2Ph)3]+. The resulting nitrido bridges Re≡N–M are almost linear and asymmetric with Re–N = 169.5 pm, Sn–N = 230.1 pm and Re–N–Sn = 164.5° for 1 and Re–N = 168.4 pm, Zr–N = 237.2 pm and Re–N–Zr = 165.6° for 2 . The phosphine ligands at the Re atom are in a meridional arrangement.  相似文献   

13.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

14.
Synthesis, NMR Spectra and Structure of [(CH3)2Ga{μ‐P(H)Si(CH3)3}2Ga(CH3)2{μ‐P(Si(CH3)3)2}Ga(CH3)2] The title compound has been prepared in good yield by the reaction of [Me2GaOMe]3 (Me = CH3) with HP(SiMe3)2 in toluene (ratio 1 : 1,1) and purified by crystallization from pentane or toluene, respectively. This organogallium compound forms (Ga–P)3 ring skeletons with one Ga–P(SiMe3)2–Ga and two Ga–P(H)SiMe3–Ga bridges and crystallizes in the monoclinic space group C2/c. The known homologous Al‐compound is isotypic, both (MIII–P)3 heterocycles have twist‐conformations, the ligands of the monophosphane bridges have trans arrangements.  相似文献   

15.
Syntheses and Structures of η1‐Phosphaallyl, η1‐Arsaallyl, and η1‐Stibaallyl Iron Complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] (E = P, As, Sb) The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2Fe–E(SiMe3)2] ( 1 a : E = P; 1 b : As; 1 c : Sb) and diphenylketene afforded the η1‐phosphaallyl‐, η1‐arsaallyl‐, and η1‐stibaallyl complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] ( 2 a : E = P; 2 b : As; 2 c : Sb). The molecular structures of 2 b and 2 c were elucidated by single crystal X‐ray analyses.  相似文献   

16.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   

17.
Syntheses and Structures of [ReNBr2(Me2PhP)3] and (Me2PhPH)[ fac ‐Re(NBBr3)Br3(Me2PhP)2] [ReNBr2(Me2PhP)3] ( 1 ) has been prepared by the reaction of [ReNCl2(Me2PhP)3] with Me3SiBr in dichloromethane. The bromo complex reacts with BBr3 under formation of [Re(NBBr3)Br2(Me2PhP)3] ( 2 ) or (Me2PhPH)[fac‐Re(NBBr3)Br3(Me2PhP)2] ( 3 ) depending on the experimental conditions. The formation of the nitrido bridge leads to a significant decrease of the structural trans influence of the nitrido ligand which is evident by the shortening of the Re‐(trans)Br bond from 2.795(1) Å in [ReNBr2(Me2PhP)3] to 2.620(1) Å in [fac‐Re(NBBr3)Br3(Me2PhP)2] and 2.598(1) Å in [Re(NBBr3)Br2(Me2PhP)3], respectively.  相似文献   

18.
[Me3SnVO3] and [(Me2Sn)4V2O9], two Organotin Vanadates with Novel 3D Network Structures Two new organotin vanadates [Me3SnVO3] ( 1 ) and [(Me2Sn)4V2O9] ( 2 ) have been prepared by the reaction of NH4VO3 with Me3SnBr and Me2SnBr2 resp. in agar gel. The structures of 1 and 2 have been determined by x‐ray crystallography at 220 K. 1 crystallizes monoclinic in the space group P21/c with a = 1335.6(2), b = 1144.4(2), c = 1118.8(2) pm, β = 113.54(2)°. 2 crystallizes orthorhombic in the space group Pnnm with a = 1257.6(2), b = 1345.4(2), c = 1323.1(1) pm. 1 consists of infinite metavanadate chains which are linked by Me3Sn+ cations. 2 exhibits a complex 3D‐ network structure with VO4 tetrahedra, Me2SnO3 trigonal bipyramides and Me2SnO4 octahedra linked by common oxygen atoms.  相似文献   

19.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

20.
(N,N,N′,N′ -tetramethylethylendiamine) di(tert-butyl)aluminium Cations — Molecular Structure of [(Me3C)2Al(TMEDA)][(Me3C)2AlBr2]? Dimeric di(tert-butyl)aluminium halides (Me3C)2AlX (X = Cl, Br) react with N,N,N′,N′ -tetramethylethylendiamine (TMEDA) to give three compounds: the salt-like [(Me3C)2Al(TMEDA)][(Me3C)2AlX2]? 1 , characterized by crystal structure determination, and [(Me3C)2Al(TMEDA)]X? 3 both with chelating amine, and the more covalent, pentane soluble (Me3C)2AlX(TMEDA) 2 with TMEDA bound by only one nitrogen atom. The reaction resembles the symmetrical and unsymmetrical cleavage of diborane(6). 3 (X = Cl) is also formed by treatment of 1 with boiling n-hexane in the presence of TMEDA over a period of 24 hours, while for X = Br the more covalent 2 is the main product under similar conditions. In solution 2 decomposes slowly yielding different products in dependency of the solvent: in benzene 3 and in n-pentane 1 are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号