首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the necessary condition m + 1 ≤ k ≤ 3m + 1 that there exist a maximal set of k triangle-factors on 6m + 3 ≥ 15 vertices is also sufficient, except possibly when k = m + 1, or when 6m + 3ϵ{45, 57, 69, 81, 93, 237, 261, 309, 333, 381}. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 309–323, 1998  相似文献   

2.
Improving a theorem of Gasarch and Hirst, we prove that if 2 ≤ km < ω, then the following is equivalent to WKL0 over RCA0 Every locally k‐colorable graph is m‐colorable.  相似文献   

3.
In this paper, it is proven that for each k ≥ 2, m ≥ 2, the graph Θk(m,…,m), which consists of k disjoint paths of length m with same ends is chromatically unique, and that for each m, n, 2 ≤ mn, the complete bipartite graph Km,n is chromatically unique. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Let Sm denote the m-vertex simple digraph formed by m − 1 edges with a common tail. Let f(m) denote the minimum n such that every n-vertex tournament has a spanning subgraph consisting of n/m disjoint copies of Sm. We prove that m lg mm lg lg mf(m) ≤ 4m2 − 6m for sufficiently large m. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 141–145, 1998  相似文献   

5.
We show that the M-crossing number crM(Cm × Cn) of Cm × Cn behaves asymptotically according to limn→∞ {crM(Cm × Cn)/((m − 2)n)} = 1, for each m ≥ 3. This result reinforces the conjecture cr(Cm × Cn) = (m − 2)n if 3 ≤ mn, which has been proved only for m ≤ 6. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 163–170, 1998  相似文献   

6.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
The following result is proved. A graph G can be expressed as the edge-disjoint union of k graphs having chromatic numbers no greater than m1,…,mk, respectively, iff χ(G) ≤ m1mk.  相似文献   

8.
Improper choosability of planar graphs has been widely studied. In particular, ?krekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k‐improper 2‐choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6; and ? k ≥ 4, gk = 5. In this article, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is k‐improper l‐choosable. We prove that if l ≥ 2 then . As a corollary, we deduce that g1 ≤ 8 and g2 ≤ 6, and we obtain new results for graphs of higher genus. We also provide an upper bound for M(k, l). This implies that for any fixed l, . © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 181–199, 2006  相似文献   

9.
We investigate the spectrum for k‐GDDs having k + 1 groups, where k = 4 or 5. We take advantage of new constructions introduced by R. S. Rees (Two new direct product‐type constructions for resolvable group‐divisible designs, J Combin Designs, 1 (1993), 15–26) to construct many new designs. For example, we show that a resolvable 4‐GDD of type g5 exists if and only if g ≡ 0 mod 12 and that a resolvable 5‐GDD of type g6 exists if and only if g ≡ 0 mod 20. We also show that a 4‐GDD of type g4m1 exists (with m > 0) if and only if gm ≡ 0 mod 3 and 0 < m ≤ 3g/2, except possibly when (g,m) = (9,3) or (18,6), and that a 5‐GDD of type g5m1 exists (with m > 0) if and only if gm ≡ 0 mod 4 and 0 < m ≤ 4g/3, with 32 possible exceptions. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 363–386, 2000  相似文献   

10.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

11.
Suppose we have a tournament with edges labelled so that the edges incident with any vertex have at most k distinct labels (and no vertex has outdegree 0). Let m be the minimal size of a subset of labels such that for any vertex there exists an outgoing edge labelled by one of the labels in the subset. It was known that m ≤ (k+12) for any tournament. We show that this bound is almost best possible, by a probabilistic construction of tournaments with m = O(k2/log k). We give explicit tournaments with m = k2−o(1). If the number of vertices is bounded by N < 2k1 we have a better upper bound of m = O(k log N), which is again almost optimal. We also consider a relaxation of this problem in which instead of the size of a subset of labels we minimize the total weight of a fractional set with analogous properties. In that case the optimal bound is 2k − 1. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

13.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

14.
Let U be an n-dimensional vector space over an algebraically closed field F. Let U(m) denote the mth symmetric power of U. For each positive integer k≤min{m,n}, let Dk denote the set of all nonzero decomposable elements x1 xm in U(m) such that dim(x1 xm ) = k and Ek denote the set of all decomposable elements x1 xm in U(m) such that dim(x1 xm ) ≤ k. In this paper we first show that Ek is an algebraic variety with Dk as a dense subset and determine the dimension of Ek . We next use these results to study the structure of linear mappings T on Um such that T(Dk ) ? Dk or T(Ek ) ? Ek for some fixed k.  相似文献   

15.
 We prove that each 3-connected plane graph G without triangular or quadrangular faces either contains a k-path P k , a path on k vertices, such that each of its k vertices has degree ≤5/3k in G or does not contain any k-path. We also prove that each 3-connected pentagonal plane graph G which has a k-cycle, a cycle on k vertices, k∈ {5,8,11,14}, contains a k-cycle such that all its vertices have, in G, bounded degrees. Moreover, for all integers k and m, k≥ 3, k∉ {5,8,11,14} and m≥ 3, we present a graph in which every k-cycle contains a vertex of degree at least m. Received: June 29, 1998 Final version received: April 11, 2000  相似文献   

16.
Based on the classification of superregular matrices, the numbers of non‐equivalent n‐arcs and complete n‐arcs in PG(r, q) are determined (i) for 4 ≤ q ≤ 19, 2 ≤ r ≤ q ? 2 and arbitrary n, (ii) for 23 ≤ q ≤ 32, r = 2 and n ≥ q ? 8<$>. The equivalence classes over both PGL (k, q) and PΓL(k, q) are considered throughout the examinations and computations. For the classification, an n‐arc is represented by the systematic generator matrix of the corresponding MDS code, without the identity matrix part of it. A rectangular matrix like this is superregular, i.e., it has only non‐singular square submatrices. Four types of superregular matrices are studied and the non‐equivalent superregular matrices of different types are stored in databases. Some particular results on t(r, q) and m′(r, q)—the smallest and the second largest size for complete arcs in PG(r, q)—are also reported, stating that m′(2, 31) = 22, m′(2, 32) = 24, t(3, 23) = 10, and m′(3, 23) = 16. © 2006 Wiley Periodicals, Inc. J Combin Designs 14: 363–390, 2006  相似文献   

17.
Let v and k be positive integers. A (v, k, 1)-packing design is an ordered pair (V, B) where V is a v-set and B is a collection of k-subsets of V (called blocks) such that every 2-subset of V occurs in at most one block of B. The packing problem is mainly to determine the packing number P(k, v), that is, the maximum number of blocks in such a packing design. It is well known that P(k, v) ≤ ⌊v⌊(v − 1)/(k − 1)⌋/k⌋ = J(k, v) where ⌊×⌋ denotes the greatest integer y such that yx. A (v, k, 1)-packing design having J(k, v) blocks is said to be optimal. In this article, we develop some general constructions to obtain optimal packing designs. As an application, we show that P(5, v) = J(5, v) if v ≡ 7, 11 or 15 (mod 20), with the exception of v ∈ {11, 15} and the possible exception of v ∈ {27, 47, 51, 67, 87, 135, 187, 231, 251, 291}. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 245–260, 1998  相似文献   

18.
Let p be an odd prime number such that p − 1 = 2em for some odd m and e ≥ 2. In this article, by using the special linear fractional group PSL(2, p), for each i, 1 ≤ ie, except particular cases, we construct a 2-design with parameters v = p + 1, k = (p − 1)/2i + 1 and λ = ((p − 1)/2i+1)(p − 1)/2 = k(p − 1)/2, and in the case i = e we show that some of these 2-designs are 3-designs. Likewise, by using the linear fractional group PGL(2,p) we construct an infinite family of 3-designs with the same v k and λ = k(k − 2). These supplement a part of [4], in which we gave an infinite family of 3-designs with parameters v = q + 1, k = (q + 1)/2 = (q − 1)/2 + 1 and λ = (q + 1)(q − 3)/8 = k(k − 2)/2, where q is a prime power such that q − 1 = 2m for some odd m and q > 7. Some of the designs given in this article and in [4] fill in a few blanks in the table of Chee, Colbourn, and Kreher [2]. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
Let n(k, l,m), klm, be the smallest integer such that any finite planar point set which has at least n(k, l,m) points in general position, contains an empty convex k-hole, an empty convex l-hole and an empty convex m-hole, in which the three holes are pairwise disjoint. In this article, we prove that n(4, 4, 5) ≤ 16.  相似文献   

20.
Burr recently proved [3] that for positive integers m1, m2……mk, and any graph G we have X(G) if and only if G can be expressed as the edge disjoint union of subgraphs Fi satisfying X(Fi) ≤ mi. This theorem is generalized to hypergraphs. By suitable interpretations the generalization is then used to deduce propositions on coverings of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号