首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NMR and MS analysis as a function of time has shown that the self-assembly of a linear ligand with Fe2+ or Ni2+, metal ions of octahedral coordination geometry, generates first a triple helicate and thereafter the circular helicate 1 as kinetic and thermodynamic products, respectively. The results provide insight into features of the energy hypersurface on which this self-assembly operates and point to the general role of kinetic and thermodynamic control in such processes.  相似文献   

2.
The introduction of different metal ions in specific positions is achieved in the synthesis of [2×2] grid-type heterometallic complexes (see schematic representation; the black bars symbolize the ditopic ligands, and the circles the different metals ions). This novel method for the construction of inorganic architectures opens the way to a number of developments.  相似文献   

3.
The chirality alone of a conformationally restricted, bifunctional ligand (L) is the basis for the self-recognition process schematically represented below. A racemic mixture of these ligands reacts with Cu+ ions quantitatively to generate a racemic mixture of a [(CuL)2]2+ homochiral complex (represented by cubes), where each complex contains ligands with identical configurations.  相似文献   

4.
Although there are no fundamental factors hindering the development of nanoscale structures, there is a growing realization that “engineering down” approaches, in other words a reduction in the size of structures generated by lithographic techniques below the present lower limit of roughly 1 μm, may become impractical. It has, therefore, become increasingly clear that only by the development of a fundamental understanding of the self-assembly of large-scale biological structures, which exist and function at and beyond the nanoscale, downwards, and the extension of our knowledge regarding the chemical syntheses of small-scale structures upwards, can the gap between the promise and the reality of nanosystems be closed. This kind of construction of nanoscale structures and nanosystems represents the so-called “bottom up” or “engineering up” approach to device fabrication. Significant progress can be made in the development of nanoscience by transferring concepts found in the biological world into the chemical arena. Central to this mission is the development of simple chemical systems capable of instructing their own organization into large aggregates of molecules through their mutual recognition properties. The precise programming of these recognition events, and hence the correct assembly of the growing superstructure, relies on a fundamental understanding and the practical exploitation of non-covalent bonding interactions between and within molecules. The science of supramolecular chemistry—chemistry beyond the molecule in its very broadest sense—has started to bridge the yawning gap between molecular and macro-molecular structures. By utilizing inter-actions as diverse as aromatic π–π stacking and metal–ligand coordination for the information source for assembly processes, chemists have, in the last decade, begun to use biological concepts such as self-assembly to construct nanoscale structures and superstructures with a variety of forms and functions. Here, we provide a flavor of how self-assembly operates in natural systems and can be harnessed in unnatural ones.  相似文献   

5.
A one pot reaction of Li2{1, 4‐(Me3Si)2C8H6}, LnCl3, and K{CH(PPh2NSiMe3)2} leads to the 1, 4‐bis(trimethylsilyl)cyclooctatetraene bis(phosphinimino)methanide complexes of yttrium and erbium, [{CH(PPh2NSiMe3)2}Ln(η8‐{1, 4‐(Me3Si)2C8H6})] (Ln = Y, Er). Both complexes have been characterized by single crystal X‐ray diffraction. The solid state structures show that the two bulky ligands cause a steric crowding around the lanthanide atom. As a result of this steric crowding both ligands are asymmetrically attached to the lanthanide atom.  相似文献   

6.
Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by coreceptors, metalloreceptors, amphiphilic receptors, and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via cocatalysis. Lipophilic receptor molecules act as selective carriers for various substrates and make it possible to set up coupled transport processes linked to electron and proton gradients or to light. Whereas endoreceptors bind substrates in molecular cavities by convergent interactions, exoreceptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors, such as the metallonucleates, may be designed. In combination with polymolecular assemblies, receptors, carriers, and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer, and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons, or ions, thus defining fields of molecular photonics, electronics, and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light-conversion and charge-separation centers. Redox-active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes of double-helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic, and ionic devices that would perform highly selective recognition, reaction, and transfer operations for signal and information processing at the molecular level.  相似文献   

7.
8.
Effective and stable Pd catalysts for the biphasic synthesis of hydrogen peroxide from carbon monoxide, oxygen, and water [Eq. (a)] can be obtained by the right choice of bidentate nitrogen ligand. The best turnover numbers (578) for this reaction have been achieved with palladium complexes with 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ligands.  相似文献   

9.
Incarcerated in a helical prison: The encapsulation of a PF6 ion within a quadruply stranded helicate (shown schematically) results from the self-assembly of four molecules of 1,4-bis(3-pyridyloxy)benzene and two PdII ions. This represents not only the first example of a coordinatively saturated quadruple helicate, but also the first example of the encapsulation of a complex anion by a helicate.  相似文献   

10.
Binding sites analogous to those of sp 3 carbon are presented by concanavalin A. This lectin has now been cross-linked with a bismannopyranoside which contains the C2 spacer required to form the computer-modeled diamondlike three-dimensional protein lattice shown in the picture.  相似文献   

11.
Its information content is infinitely smaller than that of DNA, but its structure (see picture) ressembles the double-stranded helix produced by nature. This self-assembled, configurationally predetermined coordination polymer is built up from enantiopure chiral bipyridine-type ligands and silver ions.  相似文献   

12.
An anion is encapsulated in the center of the new cage compound [Ni6(atu)8X]X3 (X=Cl—for the structure see picture—or Br; Hatu=amidinothiourea). A combination of Lewis acid–base and hydrogen-bonding interactions cause the square-planar [Ni(Hatu)2]2+ units, after deprotonation, to assemble to form this compound. A remarkable feature is the anion dependence of the cage formation; nitrate, acetate, and perchlorate are unsuitable as templates.  相似文献   

13.
    
Controlling the regio‐ and stereochemistry of the photoproducts in solution is far more challenging for polyenes than for monoalkenes. Herein, a supramolecularly‐controlled topochemical reaction of conjugated dienes in homogeneous system is developed, ultimately providing two cyclooctadiene‐cored tetraimidazolium molecular receptors exclusively. These cyclooctadiene derivatives exhibited highly sensitive and selective fluorescence sensing for thymine relative to other biologically relevant species in aqueous solution at physiological pH. Both the cyclooctadiene moieties and imidazolium units play important roles in the selective recognition observed. The presented supramolecularly‐controlled method allows the simple yet rare selective photoconversion of flexible cyclooctadiene derivatives in solution. This study offers a new synthetic strategy for the preparation of functional molecules with potential for use in biological applications.  相似文献   

14.
Three new complexes with the ligand 3,5‐diamino‐1,2,4‐triazole (Hdatrz), [Co32‐Hdatrz)6(H2O)6]·(NO3)8·4H2O ( 1 ), [Cu32‐Hdatrz)42‐Cl)2(H2O)2Cl2]·Cl2·4H2O·2C2H5OH ( 2 ) and {[Zn22‐SO4) (μ3‐datrz)2]·2H2O}n ( 3 ) have been synthesized and structurally characterized. Complex 1 has a linear trinuclear mixed‐valence cobalt structure with six neutral triazole ligands in the N(1), N(2)‐bridging mode. The central cobalt atom, Co(1), is coordinated to six nitrogen atoms (octahedral) whereas the terminal cobalt atom, Co(2), is coordinated to an N3O3 moiety (octahedral). In complex 1 , the uudd cyclic water clusters, nitrate anions and the trimeric cations are linked to a supramolecular structure. Complex 2 features a linear trinuclear copper(II) core, with four N(1), N(2)‐bridging triazole ligands and two chlorido bridges. The central copper atom is coordinated to an N4Cl2 moiety (octahedral) whereas the terminal copper is coordinated to an N2Cl2O moiety (square‐pyramidal). In complex 2 , tetrahedral hydrogen bonding interactions play an important role to form a supramolecular network. Complex 3 exhibits a polymeric structure, with N(1), N(2), N(4)‐bridging triazolate ligands and sulfate bridges, in which zinc is coordinated to an N3O moiety (tetrahedral). In complex 3 , water molecules and sulfate anions construct the sulfate‐water supramolecular chain with hydrogen bonding interactions. In addition, the complexes were investigated by elemental analyses, IR spectroscopic, and thermogravimetric measurements.  相似文献   

15.
Combinatorial synthesis has developed within a few years from a laboratory curiosity to a method that is taken seriously in drug research. Rapid progress in molecular biology and the resulting ability to determine the activity of new substances extremely efficiently have led to a change in paradigm for the synthesis of test compounds: in addition to the conventional procedure of synthesizing one substance after another, new methods allowing simultaneous creation of many structurally defined substances are becoming increasingly important. A characteristic of combinatorial synthesis is that a reaction is performed with many synthetic building blocks at once—in parallel or in a mixture— rather than with just one building block. All possible combinations are formed in each step, so that a large number of products, a so-called library, is obtained from only a few reactants. Several methods have been developed for combinatorial synthesis of small organic molecules, based on research into peptide library synthesis: single substances are produced by highly automated parallel syntheses, and special techniques enable targeted synthesis of mixtures with defined components. Many structures can be obtained by combinatorial synthesis, and the size of the libraries created ranges from a few individual compounds to many thousand substances in mixtures. This article gives an overview of the combinatorial syntheses of small organic molecules reported to date, performed both in solution and on a solid support. In addition, different techniques for identification of active compounds in mixtures are presented, together with ways to automate syntheses and process the large amounts of data produced. An overview of pionering companies active in this area is also given. The final outlook attempts to predict the future development of this exponentially growing area and the influence of this new thinking in other areas of chemistry.  相似文献   

16.
Molecular recognition and electrostatic interaction of oppositely charged polyelectrolytes are combined in the fabrication of ultrathin metallosupramolecular multilayers [shown schematically in the picture, PEI=polyethyleneimine, PSS=poly(styrene sulfonate)]. The layers between the PSS layers are composed of an iron(II ) bis(terpyridine) coordination polymer.  相似文献   

17.
Careful selection of the spacer group used to separate the metal-binding domains allows control of the directionality in a helix; self-assembly leads uniquely to a double-helical cation with a head-to-tail (HT) configuration (shown schematically) in both the solid state and solution.  相似文献   

18.
The reactions of [η5‐Cp2ZrCl2] (Cp = η5‐C5H5) with [K(THF)n][N(PPh2)2] (n = 1.25—1.5) and K[CH(PPh2NSiMe3)2] are reported. The first reaction led to the monoamido complex [η5‐Cp2Zr(Cl)N(PPh2)2] in which the {(Ph2P)2N} ligand — via a phosphorous and the nitrogen atom — is coordinated to the zirconium atom in a chelating (η2) fashion. Reaction of the potassium methanide compound, K{CH(PPh2NSiMe3)2} with zirconocene dichloride yield the carbene‐like mono cyclopentadienyl complex [η5‐CpZr(Cl){C(PPh2NSiMe3)2}]. The complex is formed by a salt metathesis and concomitant a cyclopentadiene extrusion.  相似文献   

19.
Like with a string of pearls , four molecular “beads” are threaded on a molecular rectangle to form a molecular necklace. This rectangular species is synthesized from two L‐shaped, preorganized pseudorotaxanes with two molecular beads each (cucurbituril, schematically symbolized by the barrels), held together by Cu2+ ions [Eq. (1)].  相似文献   

20.
Clothespin-shaped bisflavin compounds 1 bearing doubly linked 3,3′:10,10′-methylene spacers exhibited significant enhancement of specific association with a variety of neutral aromatic compounds in DMF under electroreduction conditions. This specificity could be rationalized by the ‘electric clip motion’ of intermediate bis-anion radical species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号