首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacetone Alcohol as Complex Ligand. Crystal Structures of [MnBr2{O=C(Me)CH2–C(Me)2OH}2] and [M{O=C(Me)CH2–C(Me)2OH}2][MCl4] with M = Fe, Co, and Zn The metal halides MnBr2 and MCl2 (M = Fe, Co, Zn) react with diacetone alcohol (4-hydroxy-4-methyl-2-pentanon) forming the title compounds, which are characterized by IR spectroscopy and crystal structure analyses. [MnBr2{O=C(Me)CH2–C(Me2)OH}2] ( 1 ): Space group C2/c, Z = 4, lattice dimensions at 293 K: a = 1189.2(4), b = 1317.2(3), c = 1200.0(3) pm, β = 102.25(3)°, R1 = 0.0256. In 1 the manganese atom is coordinated in a distorted octahedral fashion by the two cis bromine atoms and by the four oxygen atoms of the two diacetone alcohol chelating molecules. The distances Mn–[OH] (223.8 pm) and Mn–[O=C] (222.1 pm) are only slightly different. [M{O=C(Me)CH2–C(Me)2OH}2][MCl4] [M = Fe ( 2 ), Co ( 3 ), Zn ( 4 )]: 2 and 3 crystallize isotypically with each other in the space group Pc, Z = 4. Lattice dimensions for 2 at 293 K: a = 865.8(3), b = 926.3(2), c = 1401.5(1) pm, β = 104.19(2)°, R1 = 0.0421. Lattice dimensions for 3 at 293 K: a = 872.3(1), b = 925.7(1), c = 1394.2(3) pm, β = 104.79(2)°, R1 = 0.0481. As in 1 , the metal atoms of the [M{O=C(Me)CH2–C(Me)2OH}2]2+ ions in 2 and 3 are chelated in a distorted octahedral fashion by two diacetone alcohol molecules and associated cis via two μ-Cl atoms of the [MCl4]2– anions to form strands. [Zn{O=C(Me)CH2–C(Me)2OH}2][ZnCl4] ( 4 ): Space group C2/c, Z = 4. Lattice dimensions at 213 K: a = 1582.27(13), b = 1356.15(13), c = 941.93(7) pm, β = 107.283(10)°, R1 = 0.0328. The zinc atom of the dication in 4 is associated in a distorted octahedral fashion by the two diacetone alcohol chelating molecules in the equatorial positions and trans by two μ-Cl atoms of the [ZnCl4]2– ions to form strands.  相似文献   

2.
Triethylphosphanimine Complexes of the Acetates of Copper(II) and Zinc. Crystal Structures of [Zn(O2C–CH3)2(HNPEt3)], [Cu5(O2C–CH3)10(HNPEt3)2], and [Cu(O2C–CH3)2(HNPEt3)2] The title compounds originate from the anhydrous acetates of zinc and copper(II) with trimethylsilyl-triethylphosphanimine, Me3SiNPEt3, in the presence of water in dichloromethane. They form colourless ( 1 ), bluish-green ( 2 ), and blue ( 3 ), respectively, single crystals, which were characterized by IR spectroscopy and by crystal structure analyses. [Zn(O2C–CH3)2(HNPEt3)] ( 1 ): Space group P 4 21c, Z = 8, lattice dimensions at –83 °C: a = b = 1709.6(2), c = 982.4(1) pm, R = 0.0551. 1 has a polymeric chain structure in which the zinc atoms are μ2-bridged via the oxygen atoms of one of the two acetato groups, while the second acetato group and the phosphanimine are bonded terminally. [Cu5(O2C–CH3)10(HNPEt3)2]( 2 · 4 CH2Cl2): Space group P21/c, Z = 8, lattice dimensions at –80 °C: a = 1761.18(13), b = 4074.5(2), c = 1733.34(15) pm, β = 91.383(10)°, R = 0.0413. 2 consists of the two structural units [Cu2(O2C–CH3)4] and [Cu3(O2C–CH3)6(HNPEt3)2], which are connected via two of the acetato groups of the Cu3-unit along the crystallographic a-axis to form three crystallographically independent polymeric strands. [Cu(O2C–CH3)2(HNPEt3)2] ( 3 ): Space group P21/n, Z = 2, lattice dimensions at 20 °C: a = 695.49(8), b = 1217.85(10), c = 1380.05(7) pm, β = 96.451(7)°, R = 0.0291. 3 forms monomeric, centrosymmetric molecules with a square planar environment at the Cu atoms.  相似文献   

3.
Crystal Structures of the Samarium Amido Complexes [Sm(l-X){N(SiMe3)2}2(THF)]2 with X = Cl, Br The crystal structures of the title compounds have been determined by X-ray methods. [Sm(μ-Cl) · {N(SiMe3)2}2(THF)]2 ( 1 ): Space group P21/n, Z = 2, lattice dimensions at 223 K: a = 1429.5(2), b = 1302.3(3), c = 1658.6(3) pm, β = 114.212(10)°, R = 0.0561. [Sm(μ-Br) · {N(SiMe3)2}2(THF)]2 ( 2 ): Space group Pbca, Z = 4, lattice dimensions at 223 K: a = 1850.0(7), b = 1611.0(9), c = 1888.1(6) pm, R = 0.0497. 1 and 2 form centrosymmetric dimeric complexes via μ-X-halogeno bridges. The samarium atoms are coordinated in a distorted trigonal-bipyramidal surrounding, the THF molecule and one of the bridging halogen atoms being in axial positions.  相似文献   

4.

Three ion-pair Ln-Cr complexes [Sm(DMA)4(H2O)3][Cr(CN)6] · 2H2O, [Gd(DMA)3(H2O)4][Cr(CN)6] · 2H2O and [Er(DMA)3(H2O)4][Cr(CN)6] (DMA = dimethylacetamide) have been synthesized. X-ray structure analyses of the title complexes revealed that there is a hydrogen-bonding network through CN groups and H2O molecules. Variable temperature magnetic susceptibilities indicate weak antiferromagnetic interactions between cation and anion pairs moderated through the hydrogen bonding network.  相似文献   

5.
Reaction of group 12 metal dihalides with 2‐acetylpyridine‐N‐oxide 4N‐methylthiosemicarbazone (H4MLO) in ethanol afforded compounds [M(H4MLO)X2] (M = ZnII, CdII, HgII; X = Cl, Br, I), the structures of which were characterized by elemental analysis and by IR and 1H and 13C NMR spectroscopy. In addition, the complexes of ZnBr2 and ZnI2 were analysed structurally by X‐ray diffractometry. In [Zn(H4MLO)Br2] the ligand is O,N,S‐tridentate and the metal is pentacoordinated, while in [Zn(H4MLO)I2] the thiosemicarbazone is S,O‐bis‐monodentate and the ZnII cation has a distorted tetrahedral coordination polyhedron. In assays of antifungal activity against Aspergillus niger and Paecilomyces variotii, only the mercury compounds showed any activity, and only [Hg(H4MLO)Cl2] and [Hg(H4MLO)I2] were competitive with nystatin against A. niger.  相似文献   

6.
Syntheses and Crystal Structures of the Nitrido‐chloro‐molybdates [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 and [Li(12‐Crown‐4)(NMoCl4)]2 · 2 CH2Cl2 Both the title compounds as well as [Li(12‐crown‐4)2]+MoNCl4 were made from MoNCl3 and the chlorides MgCl2 and LiCl, respectively, in dichloromethane suspensions in the presence of tetrahydrofuran and 12‐crown‐4, respectively. They form orange‐red moisture‐sensitive crystals, which were characterized by their IR spectra and partly by crystal structure analyses. [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 ( 1 ): space group C2/m, Z = 2, lattice dimensions at –50 °C: a = 1736.6(1), b = 1194.8(1), c = 1293.5(2) pm; β = 90.87(1)°; R1 = 0.037. In 1 the magnesium ion is coordinated octahedrally by the oxygen atoms of the four THF molecules and in trans‐position by the nitrogen atoms of the two [N≡MoCl4(THF)] ions. [Li(12‐crown‐4)(NMoCl4)]2 · 2 CH2Cl2 ( 2 ): space group P 1, Z = 1, lattice dimensions at –70 °C: a = 930.4(1), b = 957.9(1), c = 1264.6(1) pm; α = 68.91(1)°, β = 81.38(1)°, γ = 63.84(1)°; R1 = 0.0643. 2 forms a centrosymmetric ion ensemble in the dimeric cation of which, i. e. [Li(12‐crown‐4)]22+, the lithium ions on the one hand are connected to the four oxygen atoms each of the crown ether molecules in a way not yet known; and in addition, each of the lithium ions enters into a intermolecular Li–O bond with neighboring crown ether molecules under formation of a Li2O2 four‐membered ring. The two N≡MoCl4 counterions are loosely coordinated to one oxygen atom each of the crown ether molecules with Mo–O distances of 320.2 pm.  相似文献   

7.
Synthesis and Crystal Structure of Hydrogen Selenates of Divalent Metals – M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) New hydrogen selenates M(HSeO4)2 (M = Mg, Mn, Zn) and M(HSeO4)2 · H2O (M = Mn, Cd) have been synthesized using MSeO4 (M = Mg, Mn, Zn, Cd) and 90% selenic acid as starting materials. The crystal structures have been determined by X-ray single crystal crystallography. The compounds M(HSeO4)2 (M = Mg, Zn) belong to the structure type of Mg(HSO4)2, whereas Mn(HSeO4)2 forms a new structure type. Both hydrogen selenate monohydrates are isotypic to Mg(HSO4)2 · H2O. In all compounds the metal atoms are octahedrally coordinated by oxygen atoms of different HSeO4-tetrahedra. In the HSeO4-tetrahedra the Se–OH-distances (mean value 1.70 Å) are about 0.1 Å longer than Se–O-distances (mean value 1.62 Å). In the structure of M(HSeO4)2 (M = Mg, Zn) there are zigzag chains of hydrogen bonded HSeO4-tetrahedra. The structure of Mn(HSeO4)2 is characterized by chains of HSeO4-tetrahedra in form of screws. Hydrogen bonds from and to water molecules connect double layers of MO6-octahedra and HSeO4-tetrahedra in the structures of M(HSeO4)2 · H2O.  相似文献   

8.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3 ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3 ions at the C1 lattice sites.  相似文献   

9.
[Zn{SSi(OBut)3}2(NH3)]2 ( 1 ) reacts with 2‐picoline or 2,4‐lutidine (L) without elimination of ammonia giving stable monometallic complexes [Zn{SSi(OBut)3}2(NH3)L] ( 3 and 4 ), with two different nitrogen ligands bonded to the metal center. Reaction of (ButO)3SiSH with zinc di(acetylacetonate) in ammonia atmosphere leads to the complex with two ammine ligands [Zn{SSi(OBut)3}2(NH3)2] · MeCN ( 5 ). Molecular and crystal structures of 3 , 4 and 5 have been determined by the single crystal X‐ray structural analysis. All have distorted tetrahedral geometry. The presence of ammonia gives rise to hydrogen bonds, different in all three cases. 3 , 4 , and 5 are the first examples of structurally characterized ammine ligated zinc thiolates.  相似文献   

10.
On the Tri(phosphorano)borazinium Monocation [H3B3(NPEt3)3Cl2]+. Crystal Structures of Me3SiNPR3 · BH3 (R = Et, Ph), [H3B3(NPEt3)3Cl1.85Br0.15]Br · CCl4, and of the Product of Hydrolysis NH4[B5O6(OH)4] · 2 H2O The crystal structures of the donor-acceptor complexes of the silylated phosphanimines with borane which are suitable as educts for the synthesis of tri(phosphorano)borazinium ions, Me3SiNPR3 · BH3 (R = Et, Ph), are described. After addition of CCl4 the reaction of Me3SiNPEt3 with HBBr2 · SMe2 in CH2Cl2 leads to the tri(phosphorano)borazinium monocation [H3B3(NPEt3)3Cl2]+, which is characterized crystallographically as [H3B3 · (NPEt3)3Cl1.85Br0.15]Br · CCl4. It complements the series of the tri(phosphorano) cations [H3B3(NPEt3)3]3+ and [H4B3(NPEt3)3]2+ by the monocation. NH4[B5O6(OH)4] · 2 H2O can be isolated as product of hydrolysis of the tri(phosphorano)borazinium ions; its crystal structure is redetermined, because in the literature it is based on a wrong space group. Me3SiNPEt3 · BH3 ( 1 ): Space group P1, Z = 4, lattice dimensions at 213 K: a = 710.9(4), b = 1465.9(3), c = 1536.0(3) pm, α = 107.05°, β = 99.40(3)°, γ = 97.41(3)°; R = 0.0740. Me3SiNPPh3 · BH3 ( 2 ): Space group P21/c, Z = 4, lattice dimensions at 203 K: a = 934.6(1), b = 1398.6(1), c = 1626.1(1) pm, β = 103.52(1)°; R = 0.0556. [H3B3(NPEt3)3Cl1.85Br0.15]Br · CCl4 ( 3 ): Space group P21/n, Z = 4, lattice dimensions at 223 K: a = 1237.9(3), b = 1214.1(3), c = 2402.4(4) pm, β = 93.52(1)°. 3 holds a B3N3 six-membered ring in a distorted boat conformation. NH4[B5O6(OH)4] · 2 H2O ( 4 ): Space group Aba2, Z = 4, lattice dimensions at 273 K: a = 1131.3(1), b = 1103.0(1), c = 923.0(1) pm; R = 0.0564.  相似文献   

11.
Disupersilylsilanides M(SiHR*2)2 of Metals of the Zinc Group (M = Zn, Cd, Hg; R* = Si t Bu3): Syntheses, Characterization, and Structures Bis(disupersilyl)silylmetals M(SiHR )2 (R* = Supersilyl = SitBu3) with M = Zn, Cd, Hg are obtained in tetrahydrofuran/benzene/pentane by the reaction of NaSiHR with ZnCl2, CdI2, HgCl2 in the molar ratio 2 : 1. The compounds form colorless, in organic media soluble, not hydrolysis‐ and air‐sensitive crystals, the stabilities of which for thermolysis or photolysis decrease in the row Zn > Hg > Cd compound. According to X‐ray structure analyses, the compounds M(SiHR )2 are monomeric with a – to date not observed – non‐linear framework –M– (angle SiMSi for M(SiHR )2 with M = Zn/Cd/Hg 170.7/174.2/174.4°).  相似文献   

12.
Synthesis and Structure of Nitridoborate Nitrides Ln4(B2N4)N (Ln = La, Ce) of the Formula Type Ln3+x(B2N4)Nx (x = 0, 1, 2) The missing member of the formula type Ln3+x(B2N4)Nx with x = 1 was synthesized and characterized for Ln = La and Ce. According to the single‐crystal X‐ray structure solution Ce4(B2N4)N crystallizes in the space group C2/m (Z = 2) with the lattice parameters a = 1238.2(1) pm, b = 357.32(3) pm, c = 905.21(7) pm and β = 129.700(1)°. The anisotropic structure refinement converged at R1 = 0.039 and wR2 = 0.099 for all independent reflections. A powder pattern of La4(B2N4)N was indexed isotypically with a = 1260.4(1) pm, b = 366.15(3) pm, c = 919.8(1) pm and β = 129.727(6)°. A structure rational for nitridoborates and nitridoborate nitrides containing B2N4 ions with the general formula Ln3+x(B2N4)Nx with x = 0, 1, 2 is presented.  相似文献   

13.
Phosphoraneiminato Complexes of Rare-Earth Elements. Crystal Structures of [Yb2Cp3(NPPh3)3], [YCp(NPPh3)(μ-OSiMe2NPPh3)]2, and [M(NPPh3)2(μ-OSiMe2NPPh3)]2 with M = Y and Sm The ytterbium complex [Yb2Cp3(NPPh3)3] with sesqui distribution of cyclopentadienide and phosphoraneiminato ligands is made from YbCp2Cl and LiNPPh3 in boiling toluene and isolated as yellow, moisture sensitive crystals, which enclose three molecules of toluene per unit cell. [Yb2Cp3(NPPh3)3] · 3 C7H8 ( 1 ): Space group Pbca, Z = 8, lattice dimensions at –80 °C: a = 2727.6(2), b = 1977.5(1), c = 2848.9(2) pm; R = 0.0541. Two of the (NPPh3)-groups link the ytterbium atoms to a nonplanar Yb2N2 four-membered ring with a folding angle of 17.1° along the Yb…Yb connecting line. The third (NPPh3) group is terminally bonded with a short Yb–N distance of 214.2 pm. [YCp(NPPh3)(μ-OSiMe2NPPh3)]2 · 4 C7H8 ( 2 ) originates from YCpCl2 and LiNPPh3 in boiling toluene with Baysilon-paste participating forming colourless, moisture sensitive crystals. Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1469.0(1), b = 1234.1(1), c = 2761.5(2) pm, β = 93.196(10)°; R = 0.0518. In 2 the yttrium atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form a centrosymmetric Y2O2 four-membered ring with Y–O bonds of different lengths. Together with the terminally bonded (NPPh3)-ligand, the η5-C5H5 group, and the N atom of the siloxyphosphaneimine group, which functions as a donor atom, the Y atoms achieve coordination number five. [Y(NPPh3)2(μ-OSiMe2NPPh3)]2 · 2 C7H8 ( 3 ) and [Sm(NPPh3)2(μ-OSiMe2NPPh3)]2 ( 4 ) originate from the metal trichlorides with KNPPh3 in THF with Baysilon paste participating and subsequent crystallization from toluene as colourless, moisture sensitive crystal needles. 3 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1804.1(2), b = 1401.8(1), c = 2221.6(2) pm, β = 98.716(9)°; R = 0.0537. 4 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 1363.4(1), b = 1364.9(1), c = 1650.6(1) pm; α = 112.457(8)°, β = 91.948(9)°, γ = 114.974(8)°; R = 0.0308. 3 and 4 form centrosymmetric dimeric molecules in which the metal atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form M2O2 four-membered rings with M–O bonds of varying length. Together with the terminally bonded (NPPh3) ligands and the N atom of the siloxyphosphaneimine ligand, which functions as a donor atom, the metal atoms achieve coordination number five.  相似文献   

14.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

15.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4 anions and neutral HF molecules. The H2PO4 anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released.  相似文献   

16.
CaI2(H2O)2 reacts with O‐donor ligands L to yield coordination compounds of the type {[Ca(H2O)2L4]I2}n/∞, ( 1 : L = CH3COOC2H5, n = 1; 2 : L = THF, n = 2). Both compounds feature a coordination number of six around the calcium atom with two water molecules in axial positions and four ligands L in equatorial positions of a tetragonal bipyramid. Due to only a slight variation in the arrangement of the cationic units [Ca(H2O)2L4]2+, hydrogen bonds can be built up between them and the iodide anions in different ways in order to lead to a one‐dimensional polymer for 1 and a two‐dimensional polymer for 2 . Density functional theory calculations provide useful informations on the involved orbitals on the μ2‐bridging iodide and on the structure of the systems, leading to a small H–I–H angle of 71.2° in 1 compared to a large H–I–H angle of 121.8° in 2 .  相似文献   

17.
New Representatives of the Er6[Si11N20]O Structure Type. High‐Temperature Synthesis and Single‐Crystal Structure Refinement of Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) with Ln = Nd, Er, Yb, Dy and 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 According to the general formula Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) (0 ≤ x ≤ 3, 0 ≤ y ≤ 3) four nitridosilicates, namely Er6[Si11N20]O, Yb6.081[Si11N20.234]O0.757, Dy0.33Sm6[Si11N20]N, and Nd7[Si8Al3N20]O were synthesized in a radiofrequency furnace at temperatures between 1300 and 1650 °C. The homeotypic crystal structures of all four compounds were determined by single‐crystal X‐ray diffraction. The nitridosilicates are trigonal with the following lattice constants: Er6[Si11N20]O: a = 978.8(4) pm, c = 1058.8(3) pm; Yb6.081[Si11N20.243]O0.757: a = 974.9(1) pm, c = 1055.7(2) pm; Dy0.33Sm6[Si11N20]N: a = 989.8(1) pm, c = 1078.7(1) pm; Nd7[Si8Al3N20]O: a = 1004.25(9) pm, c = 1095.03(12) pm. The crystal structures were solved and refined in the space group P31c with Z = 2. The compounds contain three‐dimensional networks built up by corner sharing SiN4 and AlN4 tetrahedra, respectively. The Ln3+ and the “isolated” O2– ions are situated in the voids of the structures. According to Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) an extension of the Er6[Si11N20]O structure type has been found.  相似文献   

18.
Crystal Structures of the Terpyridine Complexes [Cd(terpy)Cl2], [Cu(terpy)(CN)Cl], and [Cu(terpy)][Cu(CN)3] · H2O By reaction of cadmium chloride with 2,2′ : 6′,2″-terpyridine (“terpy”) in water/acetone crystals of [Cd(terpy)Cl2] ( 1) were formed. The compound crystallizes monoclinic, space group P21/c, a = 1111.70(10), b = 823.10(7), c = 1643.00(14) pm, β = 93.913(1)°, Z = 4. Starting from mixtures of different molar ratios of copper(II) chloride, terpyridine, and KCN in water/methanole, two complexes of different composition were obtained. At the molar ratio of 1 : 1 : 2 a copper(II) coordination compound with both halide and pseudohalide ligands, [Cu(terpy)(CN)Cl] ( 2 ), was formed which also crystallizes monoclinic, P21/c, a = 1065.6(3), b = 824.6(2), c = 1644.5(7) pm, β = 98.214(3)°, Z = 4. At a molar ratio of 1 : 1 : 10 a partial reduction of copper(II) occured with formation of a mixed valency compound [Cu(terpy)][Cu(CN)3] · H2O ( 3 ) which crystallizes in the hexagonal space group P6522, with a = b = 800.29(1), c = 4771.05(7) pm, Z = 6. Compounds 1 and 2 are structurally similar, the coordination of the metal atoms is square pyramidal. Networks are formed by hydrogen bridges. In 3 the copper(II) ions show a distorted square planar coordination by the three N atoms of the terpy ligand and one N atom of a bridging CN group, the copper(I) atoms, however, show trigonal planar coordination by three CN ligands to which the water molecules are bonded by hydrogen bridges. Thus helical chains are formed which stretch in the direction of the screw axes. The EPR spectrum of 3 was measured.  相似文献   

19.
The Orientation of the Re2Cl82– Ions in (PPh4)2[Re2Cl8] · 2 L (L = Acetonitrile, Dichloromethane) (PPh4)2[Re2Cl8] · 2 MeCN was obtained in small yields from PPh4Cl and ReCl5 in the presence of Na2S4 or K2S5 in acetontrile. Its crystal structure was determined by X‐ray diffraction. The crystals are nearly isotypic with those of (PPh4)2[Re2Cl8] · 2 CH2Cl2. The PPh4+ ions, the solvent molecules, and the chlorine atoms occupy nearly identical positions in both triclinic structures. Nevertheless, 98% of the Re≡Re groups are differently oriented within the slightly elongated Cl8 cubes surrounding them. The space requirement of the elongated cubes seems to be more important for the orientation than electrostatic forces. The PPh4+ ions form (PPh4+)2 pairs around inversion centers.  相似文献   

20.
Preparation and Crystal Structures of Silver(I) Mixed Ligand Complexes with Bibenzimidazole and Triphenylphosphane: [Ag(PPh3)2(bbimH2)](COOCH3) · 2 CH2Cl2 and [{Ag(PPh3)2}2(μ-bbim)] · 4 CH2Cl2 The title compounds are obtained from silver acetate, 2,2′-bibenzimidazole and PPh3. They are characterized by their IR, 1H-NMR, 31P-NMR spectra and crystal structure determinations. [Ag(PPh3)2(bbimH2)](COOCH3) · 2 CH2Cl2: Reaction in CH2Cl2. Space group C2/c, Z = 4, 3129 observed unique reflections, R = 0.033. Lattice parameters at 203 K: a = 1450.8; b = 1556.2; c = 2316.4 pm; β = 99.69°. The crystal structure is built up by monomeric molecules with distorted tetrahedral coordination of the silver atom (AgP2N2) and bibenzimidazole as a bidentate ligand. The acetate ion is linked to the NH-groups of the bibenzimidazole by hydrogen bonds. [{Ag(PPh3)2}2(μ-bbim)] · 4 CH2Cl2: Reaction in fused PPh3 at 180 °C. Space group P 1, Z = 1. 9227 observed unique reflections, R = 0.051. Lattice parameters at 203 K: a = 1276.5; b = 1352.1; c = 1408.1 pm; α = 96.97; β = 115.87; γ = 96.84°. The crystal structure is built up by centrosymmetric molecules with distorted tetrahedral coordination of the silver atoms (AgN2P2) and bibenzimidazolate(2–) as tetradentate bridging ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号