首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By an equivalent reformulation of the linear complementarity problem into a system of fixed‐point equations, we construct modulus‐based synchronous multisplitting iteration methods based on multiple splittings of the system matrix. These iteration methods are suitable to high‐speed parallel multiprocessor systems and include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, successive overrelaxation, and accelerated overrelaxation of the modulus type as special cases. We establish the convergence theory of these modulus‐based synchronous multisplitting iteration methods and their relaxed variants when the system matrix is an H + ‐matrix. Numerical results show that these new iteration methods can achieve high parallel computational efficiency in actual implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we study parallel (two‐stage) multisplitting methods for singular M‐matrices. Some theoretical analysis in consistency and convergence of methods are presented, which also affirms that the Bru, Canto and Climents' conjecture holds. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, we construct modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices. These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous two-stage multisplitting iteration methods and their relaxed variants when the system matrix is an H ?+?-matrix. Numerical results show that in terms of computing time the modulus-based synchronous two-stage multisplitting relaxation methods are more efficient than the modulus-based synchronous multisplitting relaxation methods in actual implementations.  相似文献   

4.
General stationary iterative methods with a singular matrix M for solving range‐Hermitian singular linear systems are presented, some convergence conditions and the representation of the solution are also given. It can be verified that the general Ortega–Plemmons theorem and Keller theorem for the singular matrix M still hold. Furthermore, the singular matrix M can act as a good preconditioner for solving range‐Hermitian linear systems. Numerical results have demonstrated the effectiveness of the general stationary iterations and the singular preconditioner M. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

In this paper, the convergence conditions of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems of H-matrices are weakened. The convergence domain given by the proposed theorems is larger than the existing ones.  相似文献   

6.
We consider the stability of an efficient Crank–Nicolson–Adams–Bashforth method in time, finite element in space, discretization of the Leray‐α model. We prove finite‐time stability of the scheme in L2, H1, and H2, as well as the long‐time L‐stability of the scheme under a Courant‐Freidrichs‐Lewy (CFL)‐type condition. Numerical experiments are given that are in agreement with the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1155–1183, 2016  相似文献   

7.
The matrix multisplitting iteration method is an effective tool for solving large sparse linear complementarity problems. However, at each iteration step we have to solve a sequence of linear complementarity sub-problems exactly. In this paper, we present a two-stage multisplitting iteration method, in which the modulus-based matrix splitting iteration and its relaxed variants are employed as inner iterations to solve the linear complementarity sub-problems approximately. The convergence theorems of these two-stage multisplitting iteration methods are established. Numerical experiments show that the two-stage multisplitting relaxation methods are superior to the matrix multisplitting iteration methods in computing time, and can achieve a satisfactory parallel efficiency.  相似文献   

8.
In this paper some lower and upper estimates of M‐constants for Orlicz–Lorentz function spaces for both, the Luxemburg and the Amemiya norms, are given. Since degenerated Orlicz functions φ and degenerated weighted sequences ω are also admitted, this investigations concern the most possible wide class of Orlicz–Lorentz function spaces. M‐constants were defined in 1969 by E. A. Lifshits, and used by many authors in the study of lattice structures on Banach spaces, as well as in the fixed point theory.  相似文献   

9.
Consider a repairable system at the time instants t and t + x, where t, x ≥0. The joint availability of the system at these time instants is defined as the probability of the system being functional in both t and t + x. A set of integral equations is derived for the joint availability of a system modelled by a finite semi–Markov process. The result is applied to the semi–Markov model of a two–unit system with sequential preventive maintenance. The method used for the numerical solution of the resulting system of integral equations is a two–point trapezoidal rule. The system of implementation is the matrix computation package MATLAB on the Apple Macintosh SE/30. The numerical results obtained by this method are shown to be in good agreement with those from simulation.  相似文献   

10.
For solving the large sparse linear complementarity problems, we establish modified modulus‐based matrix splitting iteration methods and present the convergence analysis when the system matrices are H+‐matrices. The optima of parameters involved under some scopes are also analyzed. Numerical results show that in computing efficiency, our new methods are superior to classical modulus‐based matrix splitting iteration methods under suitable conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
An E–W matrix M is a ( ? 1, 1)‐matrix of order , where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.  相似文献   

12.
We extend Zeifman's method for bounding the spectral gap and obtain the asymptotical behaviour, as N→∞, of the spectral gap of a class of birth–death Markov chains known as random walks on a complete graph of size N. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
关于线性互补问题的模系矩阵分裂迭代方法   总被引:1,自引:0,他引:1  
张丽丽 《计算数学》2012,34(4):373-386
模系矩阵分裂迭代方法是求解大型稀疏线性互补问题的有效方法之一.本文的目标是归纳总结模系矩阵分裂迭代方法的最新发展和已有成果,主要内容包括相应的多分裂迭代方法, 二级多分裂迭代方法和两步多分裂迭代方法, 以及这些方法的收敛理论.  相似文献   

14.
In this paper, we are introducing pertinent Euler–Lagrange–Jensen type k‐quintic functional equations and investigate the ‘Ulam stability’ of these new k‐quintic functional mappings f:XY, where X is a real normed linear space and Y a real complete normed linear space. We also solve the Ulam stability problem for Euler–Lagrange–Jensen alternative k‐quintic mappings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Bai  Zhong-Zhi 《Numerical Algorithms》1997,15(3-4):347-372
The finite difference or the finite element discretizations of many differential or integral equations often result in a class of systems of weakly nonlinear equations. In this paper, by reasonably applying both the multisplitting and the two-stage iteration techniques, and in accordance with the special properties of this system of weakly nonlinear equations, we first propose a general multisplitting two-stage iteration method through the two-stage multiple splittings of the system matrix. Then, by applying the accelerated overrelaxation (AOR) technique of the linear iterative methods, we present a multisplitting two-stage AOR method, which particularly uses the AOR-like iteration as inner iteration and is substantially a relaxed variant of the afore-presented method. These two methods have a forceful parallel computing function and are much more suitable to the high-speed multiprocessor systems. For these two classes of methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some suitable assumptions when the involved nonlinear mapping is only directionally differentiable. When the system matrix is either an H-matrix or a monotone matrix, and the nonlinear mapping is a P-bounded mapping, we thoroughly set up the global convergence theories of these new methods. Moreover, under the assumptions that the system matrix is monotone and the nonlinear mapping is isotone, we discuss the monotone convergence properties of the new multisplitting two-stage iteration methods, and investigate the influence of the multiple splittings as well as the relaxation parameters upon the convergence behaviours of these methods. Numerical computations show that our new methods are feasible and efficient for parallel solving of the system of weakly nonlinear equations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
We present an inexact multisplitting method for solving the linear complementarity problems, which is based on the inexact splitting method and the multisplitting method. This new method provides a specific realization for the multisplitting method and generalizes many existing matrix splitting methods for linear complementarity problems. Convergence for this new method is proved when the coefficient matrix is an H+H+-matrix. Then, two specific iteration forms for this inexact multisplitting method are presented, where the inner iterations are implemented either through a matrix splitting method or through a damped Newton method. Convergence properties for both these specific forms are analyzed, where the system matrix is either an H+H+-matrix or a symmetric matrix.  相似文献   

17.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

18.
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.  相似文献   

19.
This paper concerns with the properties of Hadamard product of inverse M‐matrices. Structures of tridiagonal inverse M‐matrices and Hessenberg inverse M‐matrices are analysed. It is proved that the product AAT satisfies Willoughby's necessary conditions for being an inverse M‐matrix when A is an irreducible inverse M‐matrix. It is also proved that when A is either a Hessenberg inverse M‐matrix or a tridiagonal inverse M‐matrix then AAT is an inverse M‐matrix. Based on these results, the conjecture that AAT is an inverse M‐matrix when A is an inverse M‐matrix is made. Unfortunately, the conjecture is not true. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

20.
The problem of solving large M-matrix linear systems with sparse coefficient matrix in block Hessenberg form is here addressed. In previous work of the authors a divide-and-conquer strategy was proposed and a backward error analysis of the resulting algorithm was presented showing its effectiveness for the solution of computational problems of queueing theory and Markov chains. In particular, it was shown that for block Hessenberg M-matrices the algorithm is weakly backward stable in the sense that the computed solution is the exact solution of a nearby linear system, where the norm of the perturbation is proportional to the condition number of the coefficient matrix. In this note a better error estimate is given by showing that for block Hessenberg M-matrices the algorithm is even backward stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号