首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A unique ligand design allows the formation of both an M2L3 triple helicate and an M4L6 tetrahedron (M=Ti, Ga; L=ligand based on 2,6-diaminoanthracene). Although the tetrahedron is entropically disfavored, a strong host–guest interaction with Me4N+ is enough to drive the equilibrium towards the tetrahedron. Remarkably, the helicate can be quantitatively converted into the tetrahedron simply by addition of Me4N+ (shown schematically).  相似文献   

2.
Two biscatecholester ligands with oligoether spacers were used to prepare dinuclear titanium(IV) triscatecholate based helicates. In the case of Li4[( 1 / 2 )3Ti2], “classical” helicates with three internally bound Li+ ions and syn‐oriented ligands in the complex units (fac/fac isomer) were obtained. In the case of the sodium salt Na4[( 2 )3Ti2], a different homochiral dinuclear triple‐stranded helicate with two internally bound Na+ ions was formed. The complex units are anti‐configured, and two of the ligand spacers are connecting internal with external positions of the helicate (mer/mer isomer). Removal of the sodium ions and addition of lithium ions leads to the switching from one topology to the other with an expanded helicate [( 2 )3Ti2]4? as an intermediate. Switching back to the “non‐classical” helicate cannot be observed because severe structural rearrangements would be required.  相似文献   

3.
The spontaneous self‐assembly of a neutral circular trinuclear TiIV‐based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n‐pentane into a solution with dichloromethane. The circular helicate has been characterized by using single‐crystal X‐ray diffraction study, 13C CP‐MAS NMR and 1H NMR DOSY solution spectroscopic, and positive electrospray ionization mass‐spectrometric analysis. These analytical data were compared with those obtained from a previously reported double‐stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double‐stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double‐stranded helicates was characterized by ΔH(toluene)=?30 kJ mol?1 and ΔS(toluene)=+357 J K?1 mol?1, whereas these values were ΔH(CH2Cl2)=?75 kJ mol?1 and ΔS(CH2Cl2)=?37 J K?1 mol?1 for the ring helicate. The transformation of the ring helicate into the double‐stranded helicate was a strongly endothermic process characterized by ΔH(CH2Cl2)=+127 kJ mol?1 and ΔH(n‐pentane)=+644 kJ mol?1 associated with a large positive entropy change ΔS=+1115 J K?1?mol?1. Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n‐pentane. Suggestions for increasing the stability of the ring helicate are given.  相似文献   

4.
The reaction of 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetraaniline with 2-pyridinecarboxaldehyde and iron(II) chloride resulted, after aqueous workup, in the diastereoselective formation of an [Fe2L3]4+ triple-stranded helicate structure, irrespective of the stoichiometry employed. The helicate structure was characterized in solution by multinuclear NMR spectroscopy, and in the solid state by single-crystal X-ray crystallography. The reaction of iron(II) tetrafluoroborate or iron(II) bistriflimide with the tetraaniline and 2-pyridinecarboxaldehyde allowed the formation of an [Fe8L6]16+ cube when the appropriate stoichiometry was used, but these structures were unstable with respect to hydrolysis. The pendant amine groups on the helicate can be functionalized by reaction with acid chlorides or anhydrides, and the resulting functionalized tetraphenylethene (TPE) units were isolated by the reaction of the helicate with tris(2-aminoethyl)amine. The emission properties of the TPE units were studied in THF/water mixtures, and they were found by dynamic light scattering to self-assemble into large (av. diameter 250 nm) structures.  相似文献   

5.
A new asymmetric oligobipyridine ligand, 1- (5’-methyl-2, 2’-bipyridin-5-y1)-2- (6’-methyl-2, 2’-bipyridin-6-yl)ethane (L), in which the bipyridine units are bridged by CH2CH2 at 5,6’-position has been synthesized. The ligand L reacts with Cu(I) and Cu(I1) ions giving double-stranded helical complexes [Cu 2 1 L2](C104)2.Et20 (1) and [Cu 2 II L2,(OH)(H20) ] [ClO4]3(2), respectively. Complexes 1 and 2 were characterized by X-ray diffraction analyses, ES-MS, ESR and cyclic voltammetry, etc. Differing from the oligobipyridine ligands bridged by CH2CH2 at 6,6’-or 5,5’-position, the ligand L not only forms a double-stranded helicate with Cu(1) ion, but also gives a double-stranded helicate with Cu(I1) ion. The results show that the linkage mode of the spacer group to the bipyridine units exerts a great impact on the formation of helix. Project supported by the National Natural Science Foundation of China (Grant NO. 29601003).  相似文献   

6.
A series of homoditopic ligands H2LCX (X=4–6) has been designed to self‐assemble with lanthanide ions (LnIII), resulting in neutral bimetallic helicates of overall composition [Ln2(LCX)3] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log β23 in the range 26–28 at pH 7.4) and display a metal‐ion environment with pseudo‐D3 symmetry and devoid of coordinated water molecules. The emission of EuIII, TbIII, and YbIII is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu2(LC5)3] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 μm of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co‐localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (λexc=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven EuIII and TbIII bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap ΔE(3ππ*–5DJ) and the sensitisation efficiency of the ligands.  相似文献   

7.
The amine‐containing ligand L, composed of two bidentate pyridyl‐thiazole moieties linked by a 1,3‐diaminophenylene unit, reacts with copper(II) ions to form a dinuclear double helicate [Cu2L2]4+. Reaction of [Cu2L2]4+ with dihydrogen phosphate (0.5 equivalents) gives the unsaturated dinuclear double helicate [Cu2L2(OPO3H2)]3+. [Cu2L2(OPO3H2)]3+ further reacts with another 0.5 equivalents of dihydrogen phosphate to give a trinuclear circular helicate which then self‐assembles into a hexameric cluster [{Cu3L3(OPO3H2)3}]26+.  相似文献   

8.
A novel double helical dicopper(II) complex was synthesized by reaction of a polydentate ligand L = 2,2′‐bipyridyl‐6,6′‐bis(2‐acetylpyrazinohydrazone) with copper(II) perchlorate in CH3CN. The self‐assembling process was studied by UV‐Vis spectrometric titration experiments which revealed the formation of dinuclear complexes [Cu2L2](ClO4)4. The structure of dicopper double‐helicate was confirmed by X‐ray diffractometry. Each copper(II) center occupies a distorted octahedral environment. Variable‐temperature magnetic measurements reveal weak antiferromagnetic interactions between Cu(II) ion centers with J = ?0.63 cm?1.  相似文献   

9.
The dinuclear compound Zn2(HL2)2(ClO4)2(C2H5OH)0.5(H2O)2 (1) based on di(2-acetylpyridyl)-6,6′-dicarboxylic acid hydrazone-2,2′-bipyridine (H2L2) has been obtained via self-assembly. X-ray crystallography indicated the formation of a molecular box rather than a helicate. The photoluminescence properties of 1 in the solid state have an emission at ca 500 nm with excitation at 400 nm at room temperature.  相似文献   

10.
An anion‐coordination‐based A4L6 (“A” denotes anion and “L” is ligand) tetrahedral cage was constructed by a C2‐symmetric bis‐bis(urea) ligand and phosphate anion, which showed reversible interconversion with the A2L3 triple helicate as a response to the template, concentration, or solvent. Notably, an unusual “peripheral” templation was found to be critical to stabilize the tetrahedral structure. This peripheral effect was utilized to assemble an “empty” A4L6 cage that allows the multi‐stimuli‐controlled capture/release of biologically important species such as choline and acetylcholine.  相似文献   

11.
蔡正洪  唐瑜  谭民裕  郁开北 《化学学报》2005,63(15):1465-1468
通过硝酸镧和双-单齿芳香酰胺型配体L {L=1,4-双[(2'-苄胺甲酰基苯氧基)-甲基]苯}之间的反应得到了配位聚合物{[La(NO3)3]2•L3}n, 并用X射线单晶衍射测定了配合物的晶体结构. 配合物为三斜晶系, P1空间群, 晶胞参数a=1.1298(2) nm, b=1.2689(1) nm, c=2.1030(3) nm, α=81.189(9)°, β=80.95(1)°, γ=65.832(9)°, V=2.7032(6) nm3, Z=2, R=0.0267, wR=0.0679, La3+为9配位, 呈变形的三帽三角棱柱配位构型. 配合物通过配体的桥联作用形成一维环链相间的配位聚合结构, 由于相邻链间不存在氢键和π-π堆积作用, 所以配合物是以单链形式堆积排列.  相似文献   

12.
Reaction of ligand L H2 (4,5‐bis[carboxymethylthio]‐1,3‐dithiol‐2‐thione) with neodymium silyl‐amide (Nd[N(TMS)2]3; TMS= ‐SiMe3), in a ratio 2:1, yields a neodymium‐dithiolene‐carboxylato complex ( 1 ) (Nd( L H) L ). Similarly, reaction of 2 equivalents of L′ H2 (4,5‐bis[2′‐hydroxyethyl)thio]‐1,3‐dithiol‐2‐thione) and one equivalent of neodymium silyl‐amide (Nd[N(TMS)2]3) allowed the isolation of complex 2 , with a ligand:metal ratio of 3:2. ATR‐IR spectrum of 1 displays a broad band characteristic of an OH group showing that one carboxylate group remains protonated. Emission spectrum of complex 1 under excitation in the visible region (at 360 nm i.e. on the ligand) displayed typical emission bands of the Nd3+, showing that energy transfer from the ligand to the lanthanide was achieved (i.e. “antenna effect”). No significant quenching from the remaining –OH group was detected. In the case of complex 2 , the main emission bands characteristic of the Nd3+ ion have been observed, by excitation at 495 nm.  相似文献   

13.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

14.
The ligand [1,2‐bis(4‐pyridinecarboxamido)ethane] (L) and the coordination polymer |[Cu(L)2(H2O)]‐(NO3)2·6H2O|·(1) haw been synthesized and characterized by ER and 1H NMR spectra. Their molecular structures and the packing of 1 have been determined by single‐crystal X‐ray diffraction analysis. The Cu(n) in 1 is bridged by two ligands forming an infinite one‐dimensional chain like structure and L in 1 adopts a different conformation from its free state. 1 belongs to monoclinic, space group P21/n, a = 1.2896(3) nm, b = 1.2552(8) nm, c = 2.2903(19) nm, β = 93.04(5)°, Z = 4, V = 3.702(4) nm3. The TG and DTG experiments showed that the uncoordinated H2O can be removed at low temperature by heating, and it does not decompose until 250 °C.  相似文献   

15.
The axial connection of flexible thioalkyls chains of variable length (n=1–12) within the segmental bis‐tridentate 2‐benzimidazole‐8‐hydroxyquinoline ligands [ L12 Cn?2 H]2? provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of AgI in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D3‐symmetrical [Ln2Ag2( L12 C3?2 H)3]2+ complexes at millimolar concentration (Ln=La, Eu, Lu). The X‐ray crystal structure supports the formation of [La2Ag2( L12 C3?2 H)3][OTf]2, which exists in the solid state as infinite linear polymers bridged by S‐Ag‐S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the AgI coordination sphere. Turned as a predictive tool, MD suggests that this AgI templating effect is efficient only for n=1–3, while for n>3 very loose interactions occur between AgI and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln2Ag2( L12 C12?2 H)3]2+ in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces.  相似文献   

16.
A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2L3]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2L3](ClO4)4 ( 1 ) preserves the magnetic properties and is fluorescent. The structure of 1 is photo‐switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.  相似文献   

17.
A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2L3]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2L3](ClO4)4 ( 1 ) preserves the magnetic properties and is fluorescent. The structure of 1 is photo‐switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.  相似文献   

18.
郭倩玲  马淑兰  朱文祥  刘迎春  张静 《中国化学》2005,23(10):1387-1390
The X-ray crystallographic structure was reported for a dinuclear copper(Ⅱ) complex with a tetraanionic ligand of p-tert-butylsulfonylcalix[4]arene [Cu2L(CH3OH)6]·4CH3OH (H4L=p-tert-butylsuffonylcalix[4]arene). The complex belongs to triclinic system, P1^-- space group, with a = 1.2303(3) nm, b = 1.2377(3) nm, c = 1.3110(3) nm, a =66.862(4)°, β= 67.206(4)°, γ=61.711(3)°, Z= 1, V= 1.5659(7) nm^3, Dc= 1.371 g/cm^3, F(000) = 682,μ(Mo Kα) = 0.883 mm^-1, R1 =0.0325, wR2=0.0870. In this complex, the calix[4]arene acts as a bis-tridentate chelating ligand with the 1,2-alternate conformation.  相似文献   

19.
A series of sterically encumbered [Pt( L )(σ‐acetylide)2] complexes were prepared in which L , a dendritic polyaromatic diimine ligand, was held constant ( L =1‐(2,2′‐bipyrid‐6‐yl)‐2,3,4,5‐tetrakis(4‐tert‐butylphenyl)benzene) and the cis ethynyl co‐ligands were varied. The optical properties of the complexes were tuned by changing the electronic character, extent of π conjugation and steric bulk of the ethynyl ligands. Replacing electron‐withdrawing phenyl‐CF3 substituents ( 4 ) with electron‐donating pyrenes ( 5 ) resulted in a red shift of both the lowest‐energy absorption (ΔE=3300 cm?1, 61 nm) and emission bands (ΔE=1930 cm?1, 64 nm). The emission, assigned in each case as phosphorescence on the basis of the excited‐state lifetimes, switched from being 3MMLL′CT‐derived (mixed metal–ligand‐to‐ligand charge transfer) when phenyl/polyphenylene substituents ( 3 , 4 , 6 ) were present, to ligand‐centred 3ππ* when the substituents were more conjugated aromatic platforms [pyrene ( 5 ) or hexa‐peri‐hexabenzocoronene ( 7 )]. The novel PtII acetylide complexes 5 and 7 absorb strongly in the visible region of the electromagnetic spectrum, which along with their long triplet excited‐state lifetimes suggested they would be good candidates for use as singlet‐oxygen photosensitisers. Determined by in situ photooxidation of 1,5‐dihydroxynaphthalene (DHN), the photooxidation rate with pyrenyl‐ 5 as sensitiser (kobs=39.3×10?3 min?1) was over half that of the known 1O2 sensitiser tetraphenylporphyrin (kobs=78.6×10?3 min?1) under the same conditions. Measured 1O2 quantum yields of complexes 5 and 7 were half and one‐third, respectively, of that of TPP, and thus reveal an efficient triplet–triplet energy‐transfer process in both cases.  相似文献   

20.
The dimer [{(η6-p-cymene)RuCl}2(μ-Cl)2] (cymene=MeC6H4iPr) reacts with N,N′-bis(p-tolyl)-N′′-(2-pyridinylmethyl)guanidine ( H2L1 ) and N,N′-bis(p-tolyl)-N′′-(2-diphenylphosphanoethyl)guanidine ( H2L2 ), in the presence of NaSbF6, giving rise to chlorido compounds of formula [(η6-p-cymene)RuCl( H2L )][SbF6] ( H2L = H2L1 ( 1 ), H2L2 ( 2 )) in which the guanidine ligand adopts a κ2 chelate coordination mode. The related ligand (S)-N,N′-bis(p-tolyl)-N′′-(1-isopropyl, 2-diphenylphosphano ethyl)guanidine ( H2L3 ) affords mixtures of the corresponding chlorido compound [(η6-p-cymene)RuCl( H2L3 )][SbF6] ( 3 ) together with the complexes [(η6-p-cymene)RuCl2( H3L3 )][SbF6] ( 4 ) and [(η6-p-cymene)Ru(κ3N,N′,P- HL3 )][SbF6] ( 10 ) which contain phosphano-guanidinium and phosphano-guanidinate ions acting as monodentate and tridentate ligand, respectively. Compounds 1 , 2 and mixture of 3 / 4 / 10 react with AgSbF6 rendering the cationic aqua-complexes [(η6-p-cymene)Ru( H2L )(OH2)][SbF6]2 ( H2L = H2L1 ( 5 ), H2L2 ( 6 ), H2L3 ( 7 )). These aqua-complexes exhibit a temperature-dependent fluxional process in solution. Experimental NMR studies and DFT theoretical calculations on complex 6 suggest that the process involves the exchange between two rotamers around one of the C−N guanidine bonds. Treatment of 5 – 7 with NaHCO3 renders the complexes [(η6-p-cymene)Ru(κ3N,N′,N′′- HL1 )][SbF6] ( 8 ) and [(η6-p-cymene)Ru(κ3N,N′,P- HL )][SbF6] ( HL = HL2 ( 9 ), HL3 ( 10 )), respectively, in which the HL ligand adopts a fac κ3 coordination mode. The new complexes have been characterized by analytical and spectroscopic means, including the determination of the crystal structures of the compounds 1 , 2 , 5 , 9 and 10 , by X-ray diffractometric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号