首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

2.
We study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in ${\mathbb Z}^dWe study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in ${\mathbb Z}^d$. We focus on the cases when an edge between x and y is added with probability decaying with the Euclidean distance as |x ? y|?s+o(1) when |x ? y| → ∞. For s ∈ (d, 2d) we show that the graph diameter for the graph reduced to a box of side L scales like (log L)Δ+o(1) where Δ?1 := log2(2d/s). In particular, the diameter grows about as fast as the typical graph distance between two vertices at distance L. We also show that a ball of radius r in the intrinsic metric on the (infinite) graph will roughly coincide with a ball of radius exp{r1/Δ+o(1)} in the Euclidean metric. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 210‐227, 2011  相似文献   

3.
We show that the Lie algebra ? of skew-symmetric matrices with respect to either transpose or symplectic involution is zero product determined. This means that every bilinear map {·,·} from ? × ? into a vector space X is of the form {x, y} = T ([x, y]) for some linear map T provided that the following condition is fulfilled: [x, y] = 0 implies {x, y} = 0.  相似文献   

4.
The construction of the extended double cover was introduced by N. Alon [1] in 1986. For a simple graph G with vertex set V = {v 1, v 2, ..., v n }, the extended double cover of G, denoted G *, is the bipartite graph with bipartition (X, Y) where X = {x 1, x 2, ..., x n } and Y = {y 1, y 2, ..., y n }, in which x i and y j are adjacent iff i = j or v i and v j are adjacent in G.In this paper we obtain formulas for the characteristic polynomial and the spectrum of G * in terms of the corresponding information of G. Three formulas are derived for the number of spanning trees in G * for a connected regular graph G. We show that while the extended double covers of cospectral graphs are cospectral, the converse does not hold. Some results on the spectra of the nth iterared double cover are also presented.  相似文献   

5.
Let GF(q) be a finite field of q elements. Let G denote the group of matrices M(x, y) = (y x0 1) over GF(q) with y ≠ 0. Fix an irreducible polynomial For each a ϵ GF(q), let Xa be the graph whose vertices are the q2q elements of G, with two vertices M(x, y), M(v, w) joined by an edge if and only if The graphs Xa with a ϵ/ {0, t2 − 4n} are (q + 1)-regular connected graphs which have received recent attention, as they've been shown to be Ramanujan graphs. We determine the diameter of these graphs Xa. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
For x and y vertices of a connected graph G, let TG(x, y) denote the expected time before a random walk starting from x reaches y. We determine, for each n > 0, the n-vertex graph G and vertices x and y for which TG(x, y) is maximized. the extremal graph consists of a clique on ?(2n + 1)/3?) (or ?)(2n ? 2)/3?) vertices, including x, to which a path on the remaining vertices, ending in y, has been attached; the expected time TG(x, y) to reach y from x in this graph is approximately 4n3/27.  相似文献   

7.
An example is given of a finite group A of order 144, with a generating set X = {x, y} such that x3 = y2 = 1 and such that the Cayley graph C(A, X) has genus 4 and characteristic −6 (both of which are small relative to the order of A), although there is no short relator of the form (xy)r with r < 12 or of the form [x, y]r with r < 6. Accordingly this and other possible examples do not fit into a pattern suggested by [5.], 244–268).  相似文献   

8.
Summary We consider a model of random walk on ℤν, ν≥2, in a dynamical random environment described by a field ξ={ξ t (x): (t,x)∈ℤν+1}. The random walk transition probabilities are taken as P(X t +1= y|X t = x t =η) =P 0( yx)+ c(yx;η(x)). We assume that the variables {ξ t (x):(t,x) ∈ℤν+1} are i.i.d., that both P 0(u) and c(u;s) are finite range in u, and that the random term c(u;·) is small and with zero average. We prove that the C.L.T. holds almost-surely, with the same parameters as for P 0, for all ν≥2. For ν≥3 there is a finite random (i.e., dependent on ξ) correction to the average of X t , and there is a corresponding random correction of order to the C.L.T.. For ν≥5 there is a finite random correction to the covariance matrix of X t and a corresponding correction of order to the C.L.T.. Proofs are based on some new L p estimates for a class of functionals of the field. Received: 4 January 1996/In revised form: 26 May 1997  相似文献   

9.
Summary This paper concerns the nonlinear filtering problem of calculating estimates E[f(xt)¦y s, st] where {x t} is a Markov process with infinitesimal generator A and {y t} is an observation process given by dy t=h(xt)dt +dwtwhere {w t} is a Brownian motion. If h(xt) is a semimartingale then an unnormalized version of this estimate can be expressed in terms of a semigroup T s,t y obtained by a certain y-dependent multiplicative functional transformation of the signal process {x t}. The objective of this paper is to investigate this transformation and in particular to show that under very general conditions its extended generator is A t y f=ey(t)h(A– 1/2h2)(e–y(t)h f).Work partially supported by the U.S. Department of Energy (Contract ET-76-C-01-2295) at the Massachusetts Institute of Technology  相似文献   

10.
Abstract. We prove the following result: Let X be a compact connected Hausdorff space and f be a continuous function on X x X. There exists some regular Borel probability measure m\mu on X such that the value of¶¶ ò\limit X f(x,y)dm(y)\int\limit _X f(x,y)d\mu (y) is independent of the choice of x in X if and only if the following assertion holds: For each positive integer n and for all (not necessarily distinct) x1,x2,...,xn,y1,y2,...,yn in X, there exists an x in X such that¶¶ ?i=1n f(xi,x)=?i=1n f(yi,x).\sum\limits _{i=1}^n f(x_i,x)=\sum\limits _{i=1}^n f(y_i,x).  相似文献   

11.
In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G X is the maximal subspace so that G⊥ = {x* ∈ X*|x*(y) = 0; y∈ G} is an L-summand in X*, then L1(Ω,G) is contained in a maximal proximinal subspace of L1(Ω,X).  相似文献   

12.
Let S = (P, B, I) be a generalized quadrangle of order (s, t). For x, y P, x y, let (x, y) be the group of all collineations of S fixing x and y linewise. If z {x, y}, then the set of all points incident with the line xz (resp. yz) is denoted by (resp. ). The generalized quadrangle S = (P, B, I) is said to be (x, y)-transitive, x y, if (x, y) is transitive on each set and . If S = (P, B, I) is a generalized quadrangle of order (s, t), s > 1 and t > 1, which is (x, y)-transitive for all x, y P with x y, then it is proved that we have one of the following: (i) S W(s), (ii) S Q(4, s), (iii) S H(4, s), (iv) S Q(5, s), (v) s = t2 and all points are regular.  相似文献   

13.
Let X(t) be an N parameter generalized Lévy sheet taking values in ℝd with a lower index α, ℜ = {(s, t] = ∏ i=1 N (s i, t i], s i < t i}, E(x, Q) = {tQ: X(t) = x}, Q ∈ ℜ be the level set of X at x and X(Q) = {x: ∃tQ such that X(t) = x} be the image of X on Q. In this paper, the problems of the existence and increment size of the local times for X(t) are studied. In addition, the Hausdorff dimension of E(x, Q) and the upper bound of a uniform dimension for X(Q) are also established.  相似文献   

14.
LetX be a closed subset of a topological spaceF; leta(·) be a continuous map fromX intoX; let {x i} be a sequence generated iteratively bya(·) fromx 0 inX, i.e.,x i+1 =a(x i),i=0, 1, 2, ...; and letQ(x 0) be the cluster point set of {x i}. In this paper, we prove that, if there exists a pointz inQ(x 0) such that (i)z is isolated with respect toQ(x 0), (ii)z is a periodic point ofa(·) of periodp, and (iii)z possesses a sequentially compact neighborhood, then (iv)Q(x 0) containsp points, (v) the sequence {x i} is contained in a sequentially compact set, and (vi) every point inQ(x 0) possesses properties (i) and (ii). The application of the preceding results to the caseF=E n leads to the following: (vii) ifQ(x 0) contains one and only one point, then {x i} converges; (viii) ifQ(x 0) contains a finite number of points, then {x i} is bounded; and (ix) ifQ(x 0) containsp points, then every point inQ(x 0) is a periodic point ofa(·) of periodp.  相似文献   

15.
One of our main results is the following: LetX be a compact connected subset of the Euclidean spaceR n andr(X, d 2) the rendezvous number ofX, whered 2 denotes the Euclidean distance inR n . (The rendezvous numberr(X, d 2) is the unique positive real number with the property that for each positive integern and for all (not necessarily distinct)x 1,x 2,...,x n inX, there exists somex inX such that .) Then there exists some regular Borel probability measure μ0 onX such that the value of ∫ X d 2(x, y)dμ0 (y) is independent of the choicex inX, if and only ifr(X, d 2) = supμ X X d 2(x, y)dμ(x)dμ(y), where the supremum is taken over all regular Borel probability measures μ onX.  相似文献   

16.
Let {Xt1,t2:t1,t2 3 0}\{X_{t_{1},t_{2}}:t_{1},t_{2}\geq0\} be a two-parameter Lévy process on ℝ d . We study basic properties of the one-parameter process {X x(t),y(t):tT} where x and y are, respectively, nondecreasing and nonincreasing nonnegative continuous functions on the interval T. We focus on and characterize the case where the process has stationary increments.  相似文献   

17.
A quasi-metric space (X,d) is called sup-separable if (X,ds) is a separable metric space, where ds(x,y)=max{d(x,y),d(y,x)} for all x,yX. We characterize those preferences, defined on a sup-separable quasi-metric space, for which there is a semi-Lipschitz utility function. We deduce from our results that several interesting examples of quasi-metric spaces which appear in different fields of theoretical computer science admit semi-Lipschitz utility functions. We also apply our methods to the study of certain kinds of dynamical systems defined on quasi-metric spaces.  相似文献   

18.
 Let Γ=(X,R) denote a distance-regular graph with diameter D≥2 and distance function δ. A (vertex) subgraph Ω⊆X is said to be weak-geodetically closed whenever for all x,y∈Ω and all zX,
We show that if the intersection number c 2>1 then any weak-geodetically closed subgraph of X is distance-regular. Γ is said to be i-bounded, whenever for all x,yX at distance δ(x,y)≤i,x,y are contained in a common weak-geodetically closed subgraph of Γ of diameter δ(x,y). By a parallelogram of length i, we mean a 4-tuple xyzw of vertices in X such that δ(x,y)=δ(z,w)=1, δ(x,w)=i, and δ(x,z)=δ(y,z)=δ(y,w)=i−1. We prove the following two theorems. Theorem 1. LetΓdenote a distance-regular graph with diameter D≥2, and assume the intersection numbers c 2>1, a 1≠0. Then for each integer i (1≤iD), the following (i)–(ii) are equivalent. (i)*Γis i-bounded. (ii)*Γcontains no parallelogram of lengthi+1. Restricting attention to the Q-polynomial case, we get the following stronger result. Theorem 2. Let Γ denote a distance-regular graph with diameter D≥3, and assume the intersection numbers c 2>1, a 1≠0. Suppose Γ is Q-polynomial. Then the following (i)–(iii) are equivalent. (i)*Γcontains no parallelogram of length 2 or 3. (ii)*Γis D-bounded. (iii)*Γhas classical parameters (D,b,α,β), and either b<−1, or elseΓis a dual polar graph or a Hamming graph. Received: February 8, 1995 / Revised: November 8, 1996  相似文献   

19.
Let be the classical middle-third Cantor set and let μ be the Cantor measure. Set s = log 2/log 3. We will determine by an explicit formula for every point x the upper and lower s-densities Θ*s , x), Θ*s , x) of the Cantor measure at the point x, in terms of the 3-adic expansion of x. We show that there exists a countable set F such that 9(Θ*s , x))− 1/s + (Θ*s , x))− 1/s = 16 holds for x \F. Furthermore, for μC almost all x, Θ*s , X) − 2 · 4s and Θ*s , x) = 4s. As an application, we will show that the s-dimensional packing measure of the middle-third Cantor set is 4s.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号