首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of cobalt(II), nickel(II), copper(II) chlorides and bromides with 3-thiophene aldehyde thiosemicarbazone (3TTSCH) leads to the formation of a series of new complexes: [Co(3TTSC)2], [Ni(3TTSC)2], [CuCl(3TTSC)]2, [CuBr(3TTSC)]2 and [CuBr2(3TTSCH)]. The crystal structures of the free ligand and of the compound [Ni(3TTSC)2] have been determined by X-ray diffraction methods. For all these complexes, the central ion is coordinated through the sulfur and the azomethine nitrogen atom of the thiosemicarbazone. [Co(3TTSC)2], [Ni(3TTSC)2] and [CuBr2(3TTSCH)] are mononuclear species, while [CuCl(3TTSC)]2 and [CuBr(3TTSC)]2 are binuclear complexes.  相似文献   

2.
In order to compare the influence of thiolate amine and thiolate thioether ligands on the reactivity of RuII centers, the complexes [Ru(bmae)] and [Ru(bmab)] have been synthesized. These are isoelectronic to [Ru(dttd)] complexes [bmae2− = 1,2-bis(2-mercapto-anilino)ethane(−2); bmab2− = 2,3-bis(2-mercapto-anilino)butane(−2); dttd2− = 2,3,8,9-dibenzo-1,4,7,10-tetrathiadecane(−2)]. The complexes [Ru(CO)3 (THF)Cl2], [Ru(PMe3)4Cl2] and [Ru(PPh3)2 (CH3CN)2Cl2] are treated with bmae-Na2 or bmab-Na2 to give the compounds [RuL2 (bmae)] and [RuL2 (bmab)] respectively (L  CO, PMe3, PPh3). These complexes are generally less reactive than the corresponding [RuL2(dttd)] compounds. UV photolysis of [Ru(CO)2 (bmae)] in the presence of PMe3 yields [Ru(CO)PMe3 (bmae)]; the bmae ligand proves to be photostable. In contrast to the substitution-labile [Ru(PPh3)2-dttd], the bmae complex [Ru(PPh3)2 (bmae)] proves to be substitution-inert. Since the X-ray structure analysis yields no hints of structural anomalies for [Ru(PPh3)2 (bmae)], electronic reasons might cause the different substitution behaviour of [Ru(PPh3)2 (bmae)] and [Ru(PPh3)2dttd].The stabilization of five-coordinate intermediates by the π-donor properties of the sulfur donor atoms should be better in the case of [Ru(PPh3)dttd] than in the case of [Ru(PPh3)(bmae)].  相似文献   

3.
The complexes [IrH(CO)(PPh3)3], trans-[IrCI(CO)- (PPh3)2], [RhH(PPh3)4], [Pd(PPh3)4], [Pt(trans-stilbene)(PPh3)2] and [Pt(η3-CH2-COCH2)-(PPh3)2] catalyse the rearrangement of Me3SiCH2C(O)CH2Cl to CH2?C(OSiMe3)-CH2Cl.  相似文献   

4.
Reactions of ClS[OCH(CF3)2]3 and S[OCH(CF3)2]2 with Phosphorus(III) Derivatives The sulfurane ClS[OCH(CF3)2]3 reacts with Me3P to give the phosphonium salt [Me3POCH(CF3)2]+Cl?, in the case of (MeO)3P products of an Arbuzov reaction are found: (MeO)2P-(:O)OCH(CF3)2 and MeCl; the sulfurane is reduced to the sulfoxylate S[OCH(CF3)2]2. The cyclic phosphite FP[OC(CF3)2C(CF3)2O] and P[OCH(CF3)2]3 furnish derivatives of pentacoordinated phosphorus upon reaction with ClS[OCH(CF3)2]3. The sulfoxylate S[OCH(CF3)2]2 oxidises Me3P, (MeO)3P and P[OCH(CF3)2]3 to form R3P? O and R3P? S (R = Me, OMe, OCH(CF3)2). The ether (CF3)2CHOCH(CF3)2 is isolated, too.  相似文献   

5.
Bis(dimethylamino)trifluoro sulfonium Salts: [CF3S(NMe2)2]+[Me3SiF2], [CF3S(NMe2)2]+ [HF2] and [CF3S(NMe2)2]+[CF3S] From the reaction of CF3SF3 with an excess of Me2NSiMe3 [CF3(NMe2)2]+[Me3SiF2] (CF3‐BAS‐fluoride) ( 5 ), from CF3SF3/CF3SSCF3 and Me2NSiMe3 [CF3S(NMe2)2]+‐ [CF3S] ( 7 ) are isolated. Thermal decomposition of 5 gives [CF3S(NMe2)2]+ [HF2] ( 6 ). Reaction pathways are discussed, the structures of 5 ‐ 7 are reported.  相似文献   

6.
Abstract

Stimulated by the successful generation of unsaturated molecules with low-coordinated phosphorus centers by heterogeneous surface dechlorination, CI2,P[sbnd]C[tbnd]C[sbnd]PCI2, is synthesized and characterized by PE and mass spectra. In addition, [Mg] curls, [Ag] wool and catalysts [Cux/TiO2] or [MgCI2,[sbnd]MgO/SiO2] are tested as potential dechlorinating agents for phosphorus halides like OPCI3, SPCI3, H3C[sbnd]PCI2, H5C2-PCI2, (H3C)3C[sbnd]PCI2, or H5C6-PCI2, in a gasflow reactor under reduced pressure and yield, inter aha, the following representative results: due to the thermodynamically favored formation of [MgCl2], [MgO] or [MgS] at the Mg surface, P4 is the only gaseous product identified from reactions of OPCI3, and SPCI3, with [Mg] metal at higher temperatures. On the contrary, passing H3C-PCI2, at 600K over [Mg] yields a reaction mixture containing P(CH3)3,(H3C)2P[sbnd]P(CH3)2, (H3C[sbnd]P), and CH4, which suggests an intermediate formation of surface phosphinidenes [H3C[sbnd]P →Mg]. Analogously, the pentamer (H3C[sbnd]H2C[sbnd]P)5 can be isolated from ethyldichlorophosphane. Reaction of the evaporated diphospha-cyanogen precursor CI2P[sbnd]C[tbnd]C[sbnd]PCI2 with the catalyst [10% MgCI2,/MgO/SiO2], produces predominantly PCI3, and P4, but PE and mass spectra provide evidence that also minor amounts of the hitherto unknown molecule P[tbnd]C[sbnd]C[tbnd]P are formed.  相似文献   

7.
The insertion of (CF3)2CO into the PH bond of MenH3?nP yields MenH2?nPC(CF3)2OH and MenH1?nP[C(CF3)2OH]2 (n=O, 1), respectively [1]. MeP[C(CF3)2OH]2 rearranges giving the diphosphine [MePOCH(CF3)2]2 and the phosphorane MeP[OCH(CF3)2]4. Me2PH reacts with (CF3)2CO forming several products, e.g. MePF[OCH(CF3)2]2 and Me2PPMe2 [1]. The phosphines tBu(R)PH(R=Me, tBu), however, add (CF3)2CO giving rise to the phosphinites tBu(R)POCH(CF3)2, which furnish stable phosphonium salts upon treating with MeI. (CF3)2CO inserts into the SH bond of RSH to yield RSC(CF3)2OH (R=H,Me,Ph), which were reacted with MeI, too. Reacting SCl2 with LiOCH(CF3)2 gives S[OCH(CF3)2]2 which is oxidised by chlorine to the sulfurane ClS[OCH(CF3)2]3 [2]. The sulfurane is able to transfer (CF3)2CHO groups to phosphorus (III) compounds, e.g. P[OCH(CF3)2]3 and Me3P yielding P[OCH(CF3)2]5 and [Me3POCH(CF3)2]+Cl?. ClS[OCH(CF3)2]3 gives a stable salt upon reaction with SbCl5, like ClP[OCH(CF3)2]4. The mechanisms for these reactions are discussed.  相似文献   

8.
Reaction of [MnBr(CO)3L] [L = Ph2POCH2CH2OPPh2, L1 , {(CH3)2CH}2POCH2CH2OP{CH(CH3)2}2, L2 ] with AgO3SCF3 and AgO2CCF3 in dichloromethane afforded the new complexes [Mn(O3SCF3)(CO)3L] and [Mn(O2CCF3)(CO)3L], respectively. Substitution of O3SCF3 resulted in the new species [Mn(SCN)(CO)3L], [Mn(NCCH3)(CO)3L](O3SCF3) and, in the case of L2 , [Mn(CN)(CO)3L2]. By contrast, any attempt to displace the O2CCF3 ligand in the same way was unsuccessful. After maintaining for some days the complex [Mn(CH3CN)(CO)3L1](O3SCF3) in dichloromethane at room temperature, the new complex [MnCl(CO)3L1] was formed. All the new complexes were characterized by elemental analysis, mass spectrometry and IR and NMR spectroscopies. In the case of [Mn(O3SCF3)(CO)3L1], [Mn(O2CCF3) (CO)3L1], [MnCl(CO)3L1], [Mn(CH3CN) (CO)3L2] (O3SCF3), [Mn(CN)(CO)3L2] and [Mn(O2CCF3)(CO)3L2], together with the previously synthesized complex [MnBr(CO)3L2], suitable crystals for X‐ray structural analysis were isolated. In all of them the Mn atom adopts six‐coordination by bonding to the three CO ligands, the two P atoms of L and either one C atom (CN), one oxygen atom (O2CCF3, O3SCF3), one N atom (CH3CN, SCN) or the halogen atom (Cl, Br).  相似文献   

9.
Ni(II) di(pentyl)dithiocarbamates of composition [Ni(Pe2dtc)2], [NiX(Pe2dtc)(PPh3)] (X = Cl, Br, I, NCS), [Ni(NCS)(Pe2dtc)(PBut3)], [Ni(Pe2dtc)(PPh3)2]ClO4 and [Ni(Pe2dtc)(PPh3)2]PF6 (Pe2dtc = di(pentyl)dithio-carbamate, PPh3 = triphenylphosphine, PBut3 = tributylphosphine) have been synthesized. The complexes have been characterized by the usual methods. X-ray structure analyses confirmed the nature of [NiI(Pe2dtc)(PPh3)] and [Ni(Pe2dtc)(PPh3)2]ClO4 complexes.  相似文献   

10.
The manganese(II)‐palladium(II)‐sulfide complex [MnCl23‐S)2Pd2(dppp)2] ( 2 ) was prepared from the reaction of [PdCl2(dppp)] with [Li(N,N'‐tmeda)]2[Mn(SSiMe3)4] ( 2 ) in a 2:1 ratio under mild conditions. The new trimethylsilylthiolate complex [Pd(dppp)(SSiMe3)2] ( 3 ) was synthesized from the reaction of [Pd(dppp)(OAc)2] with two equivalents of Li[SSiMe3]; this was then used in a reaction with [Mn(CH3CN)2(OTf)2] to form the manganese(II)‐palladium(II)‐sulfide cluster [Mn(OTf)(thf)23‐S)2Pd2(dppp)2]OTf ( 4 ).  相似文献   

11.
Synthetic procedures are described that allow access to the new complexes cis-[Mo2O5(apc)2], cis-[WO2(apc)2], trans-[UO2(apc)2], [Ru(apc)2(H2O)2], [Ru(PPh3)2(apc)2], [Rh(apc)3], [Rh(PPh3)2(apc)2]ClO4, [M(apc)2], [M(PPh3)2(apc)]Cl, [M(bpy)(apc)]Cl (M(II) = Pd, Pt), [Pd(bpy)(apc)Cl], [Ag(apc)(H2O)2] and [Ir(bpy)(Hapc)2]Cl3, where Hapc, is 3-aminopyrazine-2-carboxylic acid. These complexes were characterized by physico-chemical and spectroscopic techniques. Both Hapc and several of its complexes display significant anticancer activity against Ehrlich ascites tumour cells (EAC) in albino mice.  相似文献   

12.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

13.
As for [RuCl2(PPh33], carbonylation of [RuCl2(PR3)3] [PR3 = P(p-tolyl)3, PEtPh2) in N,N 1-dimethylformamide (dmf) gives [Ru(CO)Cl2 (dmf) (PR3)2] (II). For PR3 = PEtPh2, rearrangement of (II) in various solvents gives inseparable mixtures (31P evidence) but for PR3 = P(p-tolyl)3 [Ru2(CO)2Cl4-{P(p-tolyl)3}3]is obtained. Reaction of [Ru(CO)Cl2 (dmf) - {P(p-tolyl)3}2] with [RuCI2{(P(p-tolyl)3}3] (1:1 mol ratio) gives [Ru2 (CO) Cl4 {P (p-tolyl)3}4] whereas reaction of [Ru (CO) Cl2 (dmf) - (PPh32] with (Rul2 {P (p-tolyl)3}3] gives [Ru2(CO)Cl4 (PPh3)2] - {P(p-tolyl)3}2] - Reaction of [RuCl2 {P(p-tolyl)3}3] with CS2 gives the related [Ru2Cl4(CS) {P(p-tolyl)3}4] and [{RuCl2(CS)}P(p-tolyl)3{2}2] whereas [RuCl2(PEtPh2)3] and CS2 produce [RuCl2(S2CPEtPh2) (PEtPh2)2]CS2 and [Ru2Cl4(CS)2(PEtph2)3].  相似文献   

14.
Synthesis, Structures, and EPR-Spectra of the Rhenium(II) Nitrosyl Complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) The paramagnetic rhenium(II) nitrosyl complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2 · (OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) are formed during the reaction of [ReOCl3(PPh3)2] with NO gas in CH2Cl2/EtOH. These and two other ReII complexes with 5 d5 ”︁low-spin”︁”︁-configuration can be observed during the reaction EPR spectroscopically. Crystal structure analysis shows linear coordinated NO ligands (Re–N–O-angles between 171.9 and 177.3°). Three OPPh3 ligands are meridionally coordinated in the final product of the reaction, [Re(NO)Cl2(OPPh3)3][ReO4] (monoclinic, P21/c, a = 13.47(1), b = 17.56(1), c = 24.69(2) Å, β = 95.12(4)°, Z = 4). [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)] (triclinic P 1, a = 10.561(6), b = 11.770(4), c = 18.483(8) Å, α = 77.29(3), β = 73.53(3), γ = 64.70(4)°, Z = 2) and [Re(NO)Cl2 (OPPh3)2(OReO3)] (monoclinic P21/c, a = 10.652(1), b = 31.638(4), c = 11.886(1) Å, β = 115.59(1)°), Z = 4) can be isolated at shorter reaction times besides the complexes [Re(NO)Cl3(Ph3P)2], [Re(NO)Cl3(Ph3P) · (Ph3PO)], and [ReCl4(Ph3P)2].  相似文献   

15.
Subvalent Gallium Triflates – Potentially Useful Starting Materials for Gallium Cluster Compounds By reaction of GaCp* with trifluormethanesulfonic acid in hexane a mixture of gallium trifluormethanesulfonates (triflates, OTf) is obtained. This mixture reacts readily with lithiumsilanides [Li(thf)3Si(SiMe3)2R] (R = Me, SiMe3) to afford the cluster compounds [Ga6{Si(SiMe3)Me}6], [Ga2{Si(SiMe3)3}4] and [Ga10{Si(SiMe3)3}6]. By crystallization from various solvents the gallium triflates [Ga(OTf)3(thf)3], [HGa(OTf)(thf)4]+ [Ga(OTf)4(thf)3], [Cp*GaGa(OTf)2]2 and [Ga(toluene)2]+ [Ga5(OTf)6(Cp*)2] were isolated and characterized by single crystal X ray structure analysis.  相似文献   

16.
Hydrogenation of amides in the presence of [Ru(acac)3] (acacH=2,4‐pentanedione), triphos [1,1,1‐tris‐ (diphenylphosphinomethyl)ethane] and methanesulfonic acid (MSA) produces secondary and tertiary amines with selectivities as high as 93 % provided that there is at least one aromatic ring on N. The system is also active for the synthesis of primary amines. In an attempt to probe the role of MSA and the mechanism of the reaction, a range of methanesulfonato complexes has been prepared from [Ru(acac)3], triphos and MSA, or from reactions of [RuX(OAc)(triphos)] (X=H or OAc) or [RuH2(CO)(triphos)] with MSA. Crystallographically characterised complexes include: [Ru(OAc‐κ1O)2(H2O)(triphos)], [Ru(OAc‐κ2O,O′)(CH3SO3‐κ1O)(triphos)], [Ru(CH3SO3‐κ1O)2(H2O)(triphos)] and [Ru2(μ‐CH3SO3)3(triphos)2][CH3SO3], whereas other complexes, such as [Ru(OAc‐κ1O)(OAc‐κ2O,O′)(triphos)], [Ru(CH3SO3‐κ1O)(CH3SO3‐κ2O,O′)(triphos)], H[Ru(CH3SO3‐κ1O)3(triphos)], [RuH(CH3SO3‐κ1O)(CO)(triphos)] and [RuH(CH3SO3‐κ2O,O′)(triphos)] have been characterised spectroscopically. The interactions between these various complexes and their relevance to the catalytic reactions are discussed.  相似文献   

17.
The vibrational and electronic spectra as well as the magnetic properties of the ion [Co(NH3)4]2+are given and discussed. [Co(NH3)4](ReO4)2 crystallizes cubically and is isostructural with the compounds [Zn(NH3)4](ReO4)2, [Zn(NH3)4](MnO4)2, [Cd(NH3)4](ReO4)2, [Cd(NH3)4](MnO4)2, [Zn(NH3)4]- (OsO3N)2 and [Cd(NH3)4](OsO3N)2.  相似文献   

18.
The hydrides [MH(O2CCF3)(CO)(PPh3)2] (M = Ru or Os) react with disubstituted acetylenes PhCCPh and PhCCMe to afford vinylic products [M{C(Ph)CHPh}(O2CCF3)(CO)(PPh3)2] and [M{C(Ph)CHMe}(O2CCF3)(CO) (PPh3)2]/[M{C(Me)CHPh}(O2CCF3)(CO)(PPh3)2] respectively. Acidolysis of these products with trifluoroacetic acid in cold ethanol liberates cis-stilbene and cis-PhHCCHMe respectively thus establishing the cis-stereochemistry of the vinylic ligands. The complexes [M(O2CCF3)2(CO)(PPh3)2] formed during the acidolysis step undergo facile alcoholysis followed by β-elimination of aldehyde to regenerate the parent hydrides [MH(O2CCF3)(CO)(PPh3)2] and thereby complete a catalytic cycle for the transfer hydrogenation of acetylenes. The molecular structure of the methanol-adduct intermediate, [Ru(O2CCF3)2(MeOH)(CO)(PPh3)2] has been determined by X-ray methods and shows that the coordinated methanol is involved in H-bonding with the monodentate trifluoroacetate ligand [MEO-H---OC(O)CF3; O...O = 2.54 Å]. The hydrides [MH(O2CCF3)(CO) (PPh3)2]react with 1,4-diphenylbutadiyne to afford the complexes [M{C(CCPh)CHPh} (O2CCF3)(CO)(PPh3)2]. The ruthenium product, which has also been obtained by treatment of [RuH(O2CCF3)(CO)(PPh3)2] with phenylacetylene, has been shown by X-ray diffraction methods to contain a 1,4-diphenylbut-1-en-3-yn-2-yl ligand. The osmium complexes [Os(O2CCF3)2(CO)(PPh3)2], [OsH(O2CCF3)(CO)(PPh3)2] and [Os{C(CCPh)CHPh}(O2CCF3)(CO)(PPh3)2] all serve as catalysts for the oligomerisation of phenylacetylene. Acetylene reacts with [Ru(O2CCF3)2(CO)(PPh3)2] in ethanol to afford the vinyl complex [Ru(CHCH2)(O2CCF3)(CO)(PPh3)2].  相似文献   

19.
[La2I2(OH)2(dibenzo-18-crown-6)2]I(I3), a Cationic Dimeric in-cavity Complex with Iodide and Triiodide as Anions Single crystals of [La2I2(OH)2(dibenzo-18-crown-6)2]I(I3) are obtained from the reaction of LaI3 and dibenzo-18-crown-6 in acetonitrile. The crystal structure monoclinic, C2/m, Z = 4, T = 293 [100] K, a = 2179(3) [2162.3(3)], b = 1070.3(3) [1069.6(1)], c = 1118.2(3) [1110.6(1)] pm, β = 93.1(1) [92.83(1)]°, R1 = 0.0601 [0.0411], wR2 = 0.1449 [0.1014] contains hydroxide-bridged cationic dimers and iodide as well as triiodide as anions.  相似文献   

20.
Rhenium Compounds Containing Heterocyclic Thiols – Syntheses and Structures Reactions of trans‐[ReOCl3(PPh3)2] with 1,3‐thiazoline‐2‐thiol (thiazSH), pyridine‐2‐thiol (pyrSH) or pyrimidine‐2‐thiol (pyrmSH) result in the formation of rhenium(V) oxo complexes or rhenium(III) species depending on the conditions applied. mer‐[ReOCl3(thiazSH)(OPPh3)], trans‐[ReCl3(PPh3)(thiazSH)2], [ReO(2‐propO)(PPh3)Cl(pyrS‐S,N)], cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] have been isolated from such reactions and structurally characterized. cis‐[ReCl2(PPh3)2(pyrS‐S,N)] and [ReCl2(PPh3)2(pyrmS‐S,N)] are obtained in better yields by ligand substitution on trans‐[ReCl3(MeCN)(PPh3)2]. The reaction between (n‐Bu4N)[ReOCl4] and purine‐6‐thiol (purinSH) gives the oxo‐bridged [O{ReO(purinS‐S,N)2}2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号