首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper introduces a three-step Oseen-linearized finite element method for the 2D/3D steady incompressible Navier–Stokes equations with nonlinear damping term. Within this method, we solve a nonlinear problem over a coarse grid followed by solving two Oseen-linearized problems over a fine grid, which possess the same stiffness matrices with only various right-hand sides. We theoretically analyze the stability of the present method, and derive optimal error estimates of the finite element solutions. We conduct a series of numerical experiments which support the theoretical analysis and test the effectiveness of the proposed method. We demonstrate numerically that there is a significant improvement in the accuracy of the approximate solutions over those for the standard two-level method.  相似文献   

2.
A very simple and efficient finite element method is introduced for two and three dimensional viscous incompressible flows using the vorticity formulation. This method relies on recasting the traditional finite element method in the spirit of the high order accurate finite difference methods introduced by the authors in another work. Optimal accuracy of arbitrary order can be achieved using standard finite element or spectral elements. The method is convectively stable and is particularly suited for moderate to high Reynolds number flows.

  相似文献   


3.
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress‐velocity formulation. The pseudostress is approximated by the Raviart‐Thomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi‐optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

4.
A finite element variational multiscale method based on two local Gauss integrations is applied to solve numerically the time‐dependent incompressible Navier–Stokes equations. A significant feature of the method is that the definition of the stabilization term is derived via two local Guass integrations at element level, making it more efficient than the usual projection‐based variational multiscale methods. It is computationally cheap and gives an accurate approximation to the quantities sought. Based on backward Euler and Crank–Nicolson schemes for temporal discretization, we derive error bounds of the fully discrete solution which are first and second order in time, respectively. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
In this article we analyze the L2 least‐squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity‐vorticity‐pressure formulation. The least‐squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first‐order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

6.
This paper studies the discrete H−1-norm least-squares method for the incompressible Stokes equations based on the velocity–pressure–stress formulation by the least-squares functional defined as the sum of L2-norms and H−1-norm of the residual equations. Some computational experiments by multigrid method and preconditioning conjugate gradient method (PCGM) on this method are shown by taking efficient and β in the discrete solution operator Th=h2IBh corresponding to the minus one norm. We also propose a new method and compare it with PCGM and multigrid method through the analysis of numerical experiments depending on the choice of β.  相似文献   

7.
In this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems.  相似文献   

8.
Based on fully overlapping domain decomposition and a recent variational multiscale method, a parallel finite element variational multiscale method for convection dominated incompressible flows is proposed and analyzed. In this method, each processor computes a local finite element solution in its own subdomain using a global mesh that is locally refined around its own subdomain, where a stabilization term based on two local Gauss integrations is adopted to stabilize the numerical form of the Navier–Stokes equations. Using the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 856–875, 2015  相似文献   

9.
In this article we present an analysis of a finite element method for solving two‐dimensional unsteady compressible Navier‐Stokes equations. Under the time‐stepping size restriction Δt ≤ Ch, we prove the existence and uniqueness of the numerical solution and obtain an a prior error estimate uniform in time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 152–166, 2003  相似文献   

10.
In this article we analyze a finite element method for three‐dimensional unsteady compressible Navier‐Stokes equations. We prove the existence and uniqueness of the numerical solution, and obtain a priori error estimates uniform in time. Numerical computations are carried out to test the orders of accuracy in the error estimates. Blend function interpolations are applied in the calculation of numerical integrations. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 432–449, 2004.  相似文献   

11.
In this paper the extension of the Legendre least-squares spectral element formulation to Chebyshev polynomials will be explained. The new method will be applied to the incompressible Navier-Stokes equations and numerical results, obtained for the lid-driven cavity flow at Reynolds numbers varying between 1000 and 7500, will be compared with the commonly used benchmark results. The new results reveal that the least-squares spectral element formulations based on the Legendre and Chebyshev Gauss-Lobatto Lagrange interpolating polynomials are equally accurate.  相似文献   

12.
A new stress-pressure-displacement formulation for the planar elasticity equations is proposed by introducing the auxiliary variables, stresses, and pressure. The resulting first-order system involves a nonnegative parameter that measures the material compressibility for the elastic body. A two-stage least-squares finite element procedure is introduced for approximating the solution to this system with appropriate boundary conditions. It is shown that the two-stage least-squares scheme is stable and, with respect to the order of approximation for smooth exact solutions, the rates of convergence of the approximations for all the unknowns are optimal both in the H1-norm and in the L2-norm. Numerical experiments with various values of the parameter are examined, which demonstrate the theoretical estimates. Among other things, computational results indicate that the behavior of convergence is uniform in the nonnegative parameter. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 297–315, 1998  相似文献   

13.
The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier–Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh. This work is partially supported by NSF grants DMS9972622, DMS20207627 and INT9814115.  相似文献   

14.
In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated nonconforming element and the lowest-order Raviart-Thomas element.

  相似文献   


15.
We present a new variational formulation of Stokes problem of fluid mechanics that allows to take into account very general boundary conditions for velocity, tangential vorticity or pressure. This formulation conducts a well posed mathematical problem in a family of particular cases. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Natural superconvergence of the least-squares finite element method is surveyed for the one-and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method. The second author was supported in part by the US National Science Foundation under Grant DMS-0612908.  相似文献   

17.
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016  相似文献   

18.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015  相似文献   

19.
A spectral element technique is examined, which builds upon a local discretization within the spectral space. To approximate a given system of equations the domain is subdivided into nonoverlapping quadrilateral elements, and within each element a discretization is found in the spectral space. The difference is that the test functions are divided into the higher-order polynomials, which have zero boundaries and lower-order polynomials, which are nonzero on one boundary. The method is examined for Navier–Stokes incompressible flow for fluid flow within a driven cavity and for flow over a backstep. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 587–599, 1997  相似文献   

20.
We give some theoretical considerations on the the flux-free finite element method for the generalized Stokes interface problem arising from the immiscible two-fluid flow problems. In the flux-free finite element method, the flux constraint is posed as another Lagrange multiplier to keep the zero-flux on the interface. As a result, the mass of each fluid is expected to be preserved at every time step. We first study the effect of discontinuous coefficients (viscosity and density) on the error of the standard finite element approximations very carefully. Then, the analysis is extended to the flux-free finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号