首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

2.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

3.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

4.
Three Novel Selenoborato- closo -dodecaborates: Syntheses and Crystal Structures of Rb8[B12(BSe3)6], Rb4Hg2[B12(BSe3)6], and Cs4Hg2[B12(BSe3)6] The three selenoborates Rb8[B12(BSe3)6] (P1, a = 10.512(5) Å, b = 10.450(3) Å, c = 10.946(4) Å, α = 104.53(3)°, β = 91.16(3)°, γ = 109.11(3)°, Z = 1), Cs4Hg2[B12(BSe3)6] (P1, a = 9.860(2) Å, b = 10.740(2) Å, c = 11.078(2) Å, α = 99.94(3)°, β = 90.81(3)°, γ = 115.97(3)°, Z = 1), and Rb4Hg2[B12(BSe3)6] (P1, a = 9.593(2) Å, b = 10.458(2) Å, c = 11.131(2) Å, α = 99.25(3)°, β = 91.16(3)°, γ = 116.30(3)°, Z = 1) were prepared from the metal selenides, amorphous boron and selenium by solid state reactions at 700 °C. These new chalcogenoborates contain B12 icosahedra completely saturated with six trigonal-planar BSe3 entities functioning as bidentate ligands to form a persubstituted closo-dodecaborate anion. The two isotypic compounds Rb4Hg2[B12(BSe3)6] and Cs4Hg2[B12(BSe3)6] are the first selenoborate structures containing a transition metal which are characterized by single crystal diffraction.  相似文献   

5.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

6.
Syntheses and Crystal Structures of new Selenido‐ and Selenolato‐bridged Copper Clusters: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4), and [Cu3(SeMes)3(dppm)] (5) The reactions of copper(I) chloride or copper(I) acetate with monodentate phosphine ligands (PR3; R = organic group) and Se(SiMe3)2 have already lead to the formation of CuSe clusters with up to 146 copper and 73 selenium atoms. If the starting materials and the bidentate phosphine ligands (Ph2P–(CH2)n–PPh2, n = 1: dppm, n = 3: dppp, n = 4: dppb; Ph2P–C≡C–PPh2: dppa) and silylated chalcogen derivates are changed (RSeSiMe3; R = Ph, Mes) a series of new CuSe clusters can be synthesized. From single crystal X‐ray structure analysis one can characterise [Cu38Se13(SePh)12(dppb)6] ( 1 ), [Cu(dppp)2] · [Cu25Se4(SePh)18(dppp)2] ( 2 ), [Cu36Se5(SePh)26(dppa)4] ( 3 ), [Cu58Se16(SePh)24(dppa)6] ( 4 ) and [Cu3(SeMes)3(dppm)] ( 5 ). In this new class of CuSe clusters, compounds 1 and 4 possess a spherical cluster skeleton, wheras 2 and 3 have a layered cluster core.  相似文献   

7.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

8.
Two synthetic routes to prepare [Hg3(O2SePh)(SePh)5]n and its structural characterization are presented in this paper. This compound results either from the partial oxidation of mercury phenylselenolate clusters or from a mixture of its components with defined stoichiometry. This compound was observed in almost all of our reactions as a by‐product, during the development of the synthesis of new mercury selenolate clusters. It was now characterized by single‐crystal X‐ray diffractometry, elemental analysis, and infrared spectroscopy.  相似文献   

9.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

10.
(PhSe)2Hg reacts in DMF with HgX2 (X = Cl, Br) in the presence of bis(pyrimidin-2-thio)methane/triphenylphosphine/4,4′-bipyridine, to give the polymeric cages [Hg5Cl3(PhSe)7] n (1), [Hg7Cl3(PhSe)11] n (2) and [Hg7Br3(PhSe)11] n (3). In compound 1 the polymeric chains along the a axis are linked through H···Cl interactions in the c axis, assembling a two-dimensional lattice in the ac plane. The analogue compounds 2 and 3 attain bulky single clusters with the general formula Hg14X6(SePh)22 (X = Cl, Br), accomplished by the symmetrical combination of two asymmetric units [Hg7X3(PhSe)11]. While the polymerization of the single units of 2 along the c axis occurs through 4 selenium atoms, the polymerization of 3 arises through 6 bonds involving Hg and Se atoms. Although 2 and 3 seem to be resultant from the random assembly of asymmetrical rings, both cluster compounds present symmetry centers.  相似文献   

11.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XIX. [Co4P2(PtBu2)2(CO)8] and [{Co(CO)3}2P4tBu4] from Co2(CO)8 and tBu2P–P=P(Me)tBu2 Co2(CO)8 reacts with tBu2P–P=P(Me)tBu2 yielding the compounds [Co4P2(PtBu2)2(CO)8] ( 1 ) and [{η2tBu2P=P–P=PtBu2}{Co(CO)3}2] ( 2 a ) cis, ( 2 b ) trans. In 1 , four Co and two P atoms form a tetragonal bipyramid, in which two adjacent Co atoms are μ2‐bridged by tBu2P groups. Additionally, two CO groups are linked to each Co atom. In 2 a and 2 b , each of the Co(CO)3 units is η2‐coordinated to the terminal P2 units resulting in the cis‐ and trans‐configurations 2 a and 2 b . 1 crystallizes in the orthorhombic space group Pnnm (No. 58) with a = 879,41(5), b = 1199,11(8), c = 1773,65(11) pm. 2 a crystallizes in the monoclinic space group P21/n (No. 14) with a = 875,97(5), b = 1625,36(11), c = 2117,86(12) pm, β = 91,714(7)°. 2 b crystallizes in the triclinic space group P 1 (No. 2) with a = 812,00(10), b = 843,40(10), c = 1179,3(2) pm, α = 100,92(2)°, β = 102,31(2)°, γ = 102,25(2)°.  相似文献   

12.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

13.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

14.
The compound [Co(En)3]2[Hg2(H2O)Cl6]Cl4 (I, En is ethylenediamine) has been synthesized and studied by X-ray diffraction. The crystals of I (a = 21.8745(14) Å, b = 10.6008(6) Å, c=15.4465(12) Å, space group Pna21) consist of tris(ethylenediamine)cobalt(III) complexes (the unit cell contains two [Co(En)3]3+ cations of opposite chirality). [Hg2(H2O)Cl6]2? anions, and isolated chloride ions. The complex anion consists of the tetrahedral [HgCl4]2? group (Hg-Cl, 2.44–2.56 Å) and the hydrated molecule [Hg(H2O)Cl2] (Hg-Cl, 2.301 and 2.308 Å; Hg-O, 2.788 Å) combined by weak Hg-Cl interactions (2.915 and 3.220 Å).  相似文献   

15.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

16.
Analytical studies on the thermolysis products from [Cd10Se4(SePh)12(PnPr3)4] are reported leading to the identification of the doubly negatively charged species [Cd17Se4(SePh)28]2−. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) has been successfully applied to analyse the composition of a polycrystalline precipitate after treatment with SePh in tetrahydrofuran (THF). Presumably, SePhreacts with the insoluble (polymeric) cluster product as a charging ligand leading to dissolved monomeric units of the cluster anion [Cd17Se4(SePh)28]2−. This cluster anion could also be crystallized from solutions as [Na(thf)218-crown-6][Cd17Se4(SePh)28] and [Na(dme)3]2[Cd17Se4(SePh)28]. The experimental results promise a wider applicability of the charged ligand exchange method for the electrospray mass spectrometric characterization of neutral clusters and to obtain intensive monodisperse cluster ion beams for further gas-phase studies. Dedicated to Prof. Dieter Fenske on the occasion of his 65th birthday.  相似文献   

17.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

18.
[(tBu)2P]2P? P[P(tBu)2]2 from LiP[P(tBu)2]2 and 1,2-Dibromomethane. Pyrolysis of tBu2P? P?P(Br)tBu2 All products of the reaction of [tBu2P]2PLi 1 with 1,2-dibromoethane 2 were investigated. Already at ?70°C tBu2P? P?P(Br)tBu2 3 as main product and [tBu2P]2PBr 4 are formed. Only with an excess of 1 also [tBu2P]P? P[P(tBu)2]2 5 is obtained. Warming of a pure solution of 3 in toluene from ?70°C to ?30°C leads to 4 , and at 20°C tBu2PBr and the cyclophosphanes P4[P(tBu)2]4 and P3[P(tBu)2]3 are observed. 5 does not result from 3 , it's rather a byproduct from the reaction of 1 with 4 . Also the ylide 3 and 1 yields 5 .  相似文献   

19.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

20.
Formation of NH4[Hg3(NH)2](NO3)3 and Transformation to [Hg2N](NO3) NH4[Hg3(NH)2](NO3)3 ( 1 ) and [Hg2N](NO3) ( 2 ) are obtained from conc. aqueous ammonia solutions of Hg(NO3)2 at ambient temperature and under hydrothermal conditions at 180 °C, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg3(NH)2](NO3)3: cubic, P4132, a = 1030.4(2) pm, Z = 4, Rall = 0.028; [Hg2N](NO3): tetra gonal, P43212, a = 1540.4(1), c = 909.8(1) pm, Z = 4, Rall = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 °C in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 °C forming yellow HgO. Most certainly, 1 is identical with a mineral previously analyzed as “Hg(NH2)(NO3)” with the same Hg:N:O ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号