首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphanimine and Phosphoraneiminato Complexes of Iron. The Crystal Structures of [FeCl3(Me3SiNPEt3)], [FeCl2(Me3SiNPEt3)]2, [FeCl2(NPEt3)]2, and [Fe(O2C? CH3)2(NPEt3)]2 The phosphanimine complexes [FeCl3(Me3SiNPEt3)] (red-orange) and [FeCl2(Me3SiNPEt3)]2 (colourless) have been prepared by reactions of Me3SiNPEt3 with FeCl3 and FeCl2, respectively, in CH2Cl2 suspensions. Thermal decomposition of these donor-acceptor complexes in boiling toluene leads to the phosphoraneiminato complex [FeCl2(NPEt3)]2 (black), whereas [Fe(O2C? CH3)2(NPEt3)]2 (brown) is formed from iron(II) acetate and Me3SiNPEt3 in boiling acetonitrile. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [FeCl3(Me3SiNPEt3)] (1) : Space group P21/c, Z = 8, structure determination with 4 673 unique reflections, R = 0.033. Lattice dimensions at ?15°C: a = 1 607.8, b = 1 602.0, c = 1 417.2 pm, β = 106.56°. 1 forms monomeric molecules with tetrahedrally coordinated iron atoms. Bond lengths in average: Fe? N = 196.9 pm, Fe? Cl = 219.7 pm. [FeCl2(Me3SiNPEt3)]2 (2) : Space group P21/c, Z = 4, structure determination with 4 992 unique reflections, R = 0.048. Lattice dimensions at 20°C: a = 1 457.9, b = 1 685.4, c = 1 507.3 pm, β = 116.74°. 2 forms dimeric molecules, which are associated by chloro bridges. The iron atoms are tetrahedrally coordinated with trans positions of the phosphanimine ligands. Both lengths in average: Fe? N = 202.2 pm, Fe? Clterminal = 224.7 pm, Fe? Cl bridge = 241.0 pm. [FeCl2(NPEt3)]2 (3): Space group P21/n, Z = 2, structure determination with 2763 unique reflections, R = 0.039. Lattice dimensions at ?70°C: a = 799.1, b = 1009.0, c = 1441.9 pm, β = 93.45°. 3 forms centrosymmetric dimeric molecules, in which the tetrahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands. Bond lengths in average: Fe? N = 191.4 pm, Fe? Cl = 222.7 pm. [Fe(O2C? CH3)2(NPEt3]2 (4): Space group P21/n, Z = 2, structure determination with 3005 observed unique reflections, R = 0.034. Lattice dimensions at -65°C: a = 886.4, b = 1444.6 pm, β = 90.60°. 4 forms centrosymmetric dimeric molecules, in which the octahedrally coordinated iron atoms are associated by the nitrogen atoms of the phosphoraneiminato ligands with bond lengths Fe? N of 191.9 and 195.0 pm. The acetate groups are coordinated in a chelating fashion.  相似文献   

2.
Crystal Structures of [Ti(NPh2)4] and [Ti2(μ-O)(NPh2)6] [Ti(NPh2)4] has been prepared from TiCl3(THF)3 and LiNPh2, the μ-oxo complex [Ti2(μ-O)(NPh2)6] results from partial hydrolysis of [Ti(NPh2)4] in toluene solution. Both complexes are characterized by crystal structure determinations. In [Ti(NPh2)4] the titanium atom is coordinated by the four nitrogen atoms in a distorted tetrahedral fashion with Ti–N bond lengths of 193.8 pm in average. In [Ti22-O)(NPh2)6] the μ-oxo ligand forms a linear symmetric TiOTi bridge with rTiO = 181.2 pm and TiN = 193.4 pm in average.  相似文献   

3.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [AlCl2(NPEt3)]2, [GaI2(NPEt3)]2, and [GaI2(NPPh3)]2 [AlCl2(NPEt3)]2 ( 1 ) is made according to the known method by reaction of aluminium trichloride with the silylated phosphaneimine Me3SiNPEt3 in acetonitrile; it is isolated as colourless, moisture sensitive crystals. The phosphoraneiminato complexes [GaI2(NPEt3)]2 ( 2 ) and [GaI2(NPPh3)]2 ( 3 ), on the other hand, are obtained by redox reactions as pale yellow crystals; ( 2 ) of “gallium(I) iodide” with Me3SiNPEt3 in toluene and ( 3 ) of gallium with N-iodine triphenylphosphaneimine, INPPh3, in tetrahydrofuran. 1 and 3 are characterized spectroscopically and by crystal structure determinations; 2 is characterized only crystallographically. 1 : Space group Pbca, Z = 4; lattice dimensions at –70 °C: a = 1232.6(2), b = 1341.1(2), c = 1393.4(3) pm, R1 = 0.0315. 1 forms centrosymmetric molecules in which the Al atoms are linked via Al–N bonds of the two (NPEt3) groups; with 185.0 and 184.4 pm these bonds are of almost the same lengths. 2 : Space group Pbca, Z = 4; lattice dimensions at –80 °C: a = 1380.0(1), b = 1311.0(1), c = 1429.1(1) pm, R1 = 0.0273. 2 crystallizes isotypically with 1 . The gallium atoms of the centrosymmetric Ga2N2 four-membered ring are connected with Ga–N distances of equal length (190.9 pm). 3 · THF: Space group P212121, Z = 2; lattice dimensions at –140 °C: a = 1494.6(1), b = 1536.3(1), c = 974.6(1) pm, R1 = 0.0382. 3 forms dimeric molecules in which the gallium atoms are linked via the N atoms of the (NPPh3) groups to form a non-planar Ga2N2 four-membered ring of C2 symmetry with Ga–N bonds of equal lengths – within standard deviations – of 194.7 pm. The phosphoraneiminato groups are arranged in a synperiplanar way.  相似文献   

4.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

5.
Phosphoraneiminato Complexes of Titanium(IV). Crystal Structures of [TiCl3(NPEt3)]2, [TiCl3(NPEt3)(THF)2], and [TiCl4{Me2Si(NPEt3)2}] [TiCl3(NPEt3)]2 ( 1 ) is formed from titanium(IV) chloride and the silylated phosphaneimine Me3SiNPEt3 in dichloromethane as reddish-brown, moisture-sensitive crystals. According to the crystal structure analysis these crystals show centrosymmetric Ti2N2 four-membered rings with Ti–N distances of 184.7 and 210.3 pm. With tetrahydrofurane 1 forms yellow, moisture sensitive crystals of the solvate [TiCl3(NPEt3)(THF)2] ( 2 ), in which the titanium atom is octahedrally coordinated. The THF molecule which is in trans position to the phosporaneiminato ligand realizes but a very weak Ti–O bond of 238.0 pm, the cis THF molecule shows a Ti–O distance of 213.7 pm. With 173.4 pm along with a TiNP bond angle of 160.0° the TiN distance is very short. The bis(phosphaneimine) complex [TiCl4{Me2Si(NPEt3)2}] ( 3 ) is formed as colourless crystals in low yield in the reaction of titanium(IV) chloride with Me3SiNPEt3 and trimethylcyclopentadienylsilane. In 3 the titanium atom is surrounded by four chlorine atoms in a distorted octahedral fashion and by the two N atoms of the Me2Si(NPEt3)2 molecule with TiN distances of 205.6 pm.  相似文献   

6.
Azido Derivatives of the Pentamethylcyclopentadienyl Vanadium(IV)-Fragment. Molecular Structures of the Binuclear Complexes [Cp*VCl(N3)(μ-N3)]2 and [Cp*V(N3)2(μ-N3)]2 The stepwise reaction of Cp*VCl3 with excess trimethylsilyl azide (Me3Si–N3) in solution leads to the paramagnetic, azido-bridged complexes [Cp*VCl2(μ-N3)]2 ( 3 ), [Cp*VCl(N3)(μ-N3)]2 ( 4 ) and [Cp*V(N3)2(μ-N3)]2 ( 5 ) which were characterized by their IR and mass spectra. The azide-rich binuclear complex 5 is also formed if a pentane solution of Cp*V(CO)4 is stirred in the presence of excess Me3Si–N3 in an open vessel. According to the X-ray structure analyses both 4 and 5 are centrosymmetric molecules with a planar V(N)2V four-membered ring. In the absence of free trimethylsilyl azide, solutions of 3 – 5 lose dinitrogen slowly; in the presence of traces of air, 5 is thereby converted to the diamagnetic, oxo-bridged complex [Cp*V(O)(N3)]2(μ-O) ( 6 ).  相似文献   

7.
New Azido Complexes of Tantalum(V). Synthesis and Molecular Structure of the Dinuclear Compounds [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) and [Cp*Ta(N3)3(μ‐N3)]2 (Cp* = Pentamethylcyclopentadienyl) The reaction of Cp*TaCl4 ( 1 ) with an excess of trimethylsilyl azide (Me3Si–N3) leads to azide‐rich dinuclear complexes which contain both terminal and bridging azido ligands. The oxo complex [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) ( 4 ) was formed in dichloromethane in the presence of traces of water, whereas [Cp*Ta(N3)3(μ‐N3)]2 ( 5 ) was obtained from boiling toluene after several days. According to the X‐ray structure determinations the Ta…Ta distance in 4 (314,5 pm) is considerably shorter than in 5 (382,2 pm).  相似文献   

8.
[PPh3Cl][ReCl4(N2S2)]?; Synthese, IR-Spektrum und Kristall Strukture The title compound is prepared by the reaction of [ReCl3(NSCl)2(POCl3)] with triphenylphosphane; it formes black crystals. The crystal structure determination was solved with X-ray methods (2861 observed independent reflexions, R = 0.038). The compound crystallizes monoclinic in the space group P21/n with four formula units per unit cell. The structure consists of [PPh3Cl] cations and [ReCl4(N2S2)]? anions, in which the rhenium atom is surrounded octahedrally by four chlorine ligands and the N atoms of a ReN2S2-five-membered ring in cis-position (symmetry C2v). The Re? N bond lengths (181 pm) and the NS bond lengths (152 pm) are in the range of double bonds; the S? S distance is very long (253 pm). The i.r. spectrum is reported.  相似文献   

9.
Phosphoraneiminato Complexes of Rare-Earth Elements. Crystal Structures of [Yb2Cp3(NPPh3)3], [YCp(NPPh3)(μ-OSiMe2NPPh3)]2, and [M(NPPh3)2(μ-OSiMe2NPPh3)]2 with M = Y and Sm The ytterbium complex [Yb2Cp3(NPPh3)3] with sesqui distribution of cyclopentadienide and phosphoraneiminato ligands is made from YbCp2Cl and LiNPPh3 in boiling toluene and isolated as yellow, moisture sensitive crystals, which enclose three molecules of toluene per unit cell. [Yb2Cp3(NPPh3)3] · 3 C7H8 ( 1 ): Space group Pbca, Z = 8, lattice dimensions at –80 °C: a = 2727.6(2), b = 1977.5(1), c = 2848.9(2) pm; R = 0.0541. Two of the (NPPh3)-groups link the ytterbium atoms to a nonplanar Yb2N2 four-membered ring with a folding angle of 17.1° along the Yb…Yb connecting line. The third (NPPh3) group is terminally bonded with a short Yb–N distance of 214.2 pm. [YCp(NPPh3)(μ-OSiMe2NPPh3)]2 · 4 C7H8 ( 2 ) originates from YCpCl2 and LiNPPh3 in boiling toluene with Baysilon-paste participating forming colourless, moisture sensitive crystals. Space group P21/c, Z = 2, lattice dimensions at –80 °C: a = 1469.0(1), b = 1234.1(1), c = 2761.5(2) pm, β = 93.196(10)°; R = 0.0518. In 2 the yttrium atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form a centrosymmetric Y2O2 four-membered ring with Y–O bonds of different lengths. Together with the terminally bonded (NPPh3)-ligand, the η5-C5H5 group, and the N atom of the siloxyphosphaneimine group, which functions as a donor atom, the Y atoms achieve coordination number five. [Y(NPPh3)2(μ-OSiMe2NPPh3)]2 · 2 C7H8 ( 3 ) and [Sm(NPPh3)2(μ-OSiMe2NPPh3)]2 ( 4 ) originate from the metal trichlorides with KNPPh3 in THF with Baysilon paste participating and subsequent crystallization from toluene as colourless, moisture sensitive crystal needles. 3 : Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1804.1(2), b = 1401.8(1), c = 2221.6(2) pm, β = 98.716(9)°; R = 0.0537. 4 : Space group P 1, Z = 1, lattice dimensions at –80 °C: a = 1363.4(1), b = 1364.9(1), c = 1650.6(1) pm; α = 112.457(8)°, β = 91.948(9)°, γ = 114.974(8)°; R = 0.0308. 3 and 4 form centrosymmetric dimeric molecules in which the metal atoms are linked via the oxygen atoms of the (OSiMe2NPPh3) groups to form M2O2 four-membered rings with M–O bonds of varying length. Together with the terminally bonded (NPPh3) ligands and the N atom of the siloxyphosphaneimine ligand, which functions as a donor atom, the metal atoms achieve coordination number five.  相似文献   

10.
Silylated Phosphaneimine Complexes of Chromium(II), Palladium(II), and Copper(II). The Crystal Structures of [CrCl2(Me3SiNPMe3)2], [PdCl2(Me3SiNPEt3)2], and [CuCl2(Me3SiNPMe3)]2 The title compounds have been prepared by the reaction of the silylated phosphaneimines Me3SiNPR3 (R = CH3, C2H5) with CrCl2(THF)2, PdCl2 and CuCl2, respectively, in dichloromethane suspensions. All donor-acceptor complexes were characterized by IR spectroscopy and by crystal structure determinations. [ CrCl2(Me3SiNPMe3 )2]: Space group Pccn, Z = 4, structure determination with 2104 observed unique reflections, R = 0.045. Lattice dimensions at ?70°C: a = 1326.3, b = 1562.5, c = 1171.5 pm. Within the monomeric molecular structure the chromium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Cr? Cl = 235.94 pm and Cr? N = 211.7 pm. [ PdCl2(Me3SiNPEt3)2 ]: Space group P21/n, Z = 2, structure determination with 2412 observed unique reflections, R = 0.031. Lattice dimensions at 20°C: a = 917.3, b = 1390.2, c = 1161.7 pm, β = 95.80°. Within the monomeric molecular structure the palladium atom is planarly coordinated within the trans-configuration of the Cl atoms and the N atoms with distances of Pd? Cl = 222.9 pm and Pd? N = 209.5 pm. [ CuCl2(Me3SiNPMe3)2 ]: Space group Pbca, Z = 4, structure determination with 1861 observed unique reflections, R = 0.067. Lattice dimensions at ?70°C: a = 1440.2, b = 1205.1, c = 1536.5 pm. The compound forms centrosymmetric dimeric molecules, in which the Cu atoms are linked via almost symmetrical chloro-bridges with Cu? Cl distances of 231.4 pm. The distance Cu? N is 196.7 pm.  相似文献   

11.
Syntheses and Crystal Structures of the Nitrido Complexes [MoNCl3(MeCN)]4 and [MoNCl2(bipy)]4 [MoNCl3(MeCN)]4 ( 1 ) is obtained by the reaction of MoCl4(MeCN)2 with Me3SiN3 in CH2Cl2 as a sparingly soluble and water sensitive red compound. It crystallizes as 1 · 3 CH2Cl2 in the triclinic space group P 1 with a = 889.7(1), b = 1004.8(1), c = 1270.4(2) pm; α = 71.69(1)°; β = 73.63(1)°; γ = 86.32(1)°, and Z = 1. It forms centrosymmetric tetranuclear complexes, in which the Mo atoms are connected by asymmetric and linear nitrido bridges with distances Mo–N of 167.5 and 214.3 pm. The acetonitrile molecules are coordinated with a long bond length Mo–N of 241 pm in trans position to the Mo–N triple bond. The reaction of 1 with 2,2′‐bipyridine in CH2Cl2/THF yields the tetranuclear molybdenum(V) complex [MoNCl2(bipy)]4 ( 2 ) as main product. It crystallizes in the tetragonal space group P42/n with a = 1637.5(2), c = 1018.3(2) pm, and Z = 2. In the tetranuclear complexes with the symmetry S4 linear and asymmetric nitrido bridges connect the Mo atoms to form an almost planar eight membered Mo–N ring with distances Mo–N of 173 and 203 pm. The bipyridine molecules coordinate as chelates in cis and trans position to the Mo–N triple bond. In this case the trans influence causes different Mo–N distances of 219 and 232 pm.  相似文献   

12.
Phosphoraneiminato Complexes of Rhenium(VII). Syntheses and Crystal Structures of [ReO3(NPR3)] (R = Ph, Et) and of [ReO(OSiMe3)3(Me3SiNPEt3)] The phosphoraneiminato complexes [ReO3(NPR3)] with R = Ph ( 1 ) and R = Et ( 2 ) are made from dirhenium heptaoxide and the silylated phosphoraneimines Me3SiNPR3. The complexes 1 and 2 as well as the red silanolate [ReO(OSiMe3)3(Me3SiNPEt3)] ( 3 ), which is formed as a by‐product in the synthesis of 2 , are characterized crystallographically. 1 and 2 are monomeric molecules, in which the phosphoraneiminato ligands NPR3 realize short ReN bonds of 179.3 pm ( 1 ) and 178.6 pm ( 2 ), respectively, with large ReNP bond angles of 162.0° ( 1 ) and 160.6° ( 2 ), respectively. In the rhenium(V) complex 3 the oxoligand occupies the apical position of the tetragonal pyramidal coordination of the rhenium atom, while the oxygen atoms of the Me3SiO groups take the basic positions along with the nitrogen atom of the phosphaneimine molecule.  相似文献   

13.
Heterometallic Coordination Compounds Re2(μ-PPh2)2[mer-(CO)3]2-trans-[InX2(H2O)]2 and New Halogene Containing Three- and Four-Nuclear Rhenium Clusters from Reactions between Re2(μ-PPh2)2(CO)8 and InX3 (X = Cl, Br, I) In sealed glass tubes equimolar amounts of Re2(μ-PPh2)2(CO)8 and InX3 (X = Cl, Br, I) were reacted in the presence of xylene at 220°C to two types of products. The first type comprised the heterometallic coordination compounds Re2(μ-PPh2)2(CO)6[InX2(H2O)]2 (X = Cl, Br, I) (yield 60%), and the second halogene containing rhenium complexes Re33-H)(μ3-X)(μ-PPh2)3(CO)6 (unsaturated three-membered metal ring with 46 VE) and Re4(μ-H)(μ-X)(μ-PPh2)44-PPh)(CO)8 and additionally those substances as cis-IRe(CO)4(PPh2H), Re2(μ-PPh2)(μ-X)(CO)8 (X = Cl, Br), Re2(μ-I)2[μ-(PPh2)2O](CO)6 and Re4(μ-Cl)2(μ-PPh2)44-PPh)(CO)8 (four-membered metal ring with 66 VE with three Re? Re bonds) which have been observed in one or two of the three reaction systems. A proposal of the reaction course is discussed. The single X-ray analysis of Re2(μ-PPh2)2[mer(CO)3]2-trans[InI2(H2O)]2 · 2 Me2CO shows for the two fold phosphido bridged dirhenium molecular fragment with 34 VE a Re? Re bond of 294.6(1) pm. From two possible transpositions of both In? Re bond vectors, the one found advantageously has sterical reasons. The average In? Re single bond length is 271.1(1) pm. The corresponding determination of the unsaturated three-membered ring compound Re33-H) (μ3-Cl)(μ-PPh2)3(CO)6 showed three Re? Re bond lenghts of comparable size, of which the mean value of 281.9(1) pm was significantly shortened by π electron delocalization effect compared to that of a saturated phosphido bridged three-membered rhenium ring compound. As it was recognized by further comparison, the structural data of the common molecular fragments in the three examined three-membered rhenium ring clusters (X = Cl, Br, I) are not dependent on the different kind of halogeno ligand atoms. Finally, the crystal structure determination of the substance Re4(μ-H)(μ-Br)(μ-PPh2)44-PPh)(CO)8 shows the presence of square-pyramidal Re44-P) atomic arrangement, of which the planar basic plane has a sequence of up- and downwards orientated four diphenylphosphido bridging groups. The four measured Re? Re single bond lengths (mean value 302.7(3) pm change with the different kind of bridging atoms. The structural features observed are compared with those of a corresponding iodine derivative.  相似文献   

14.
[Zr2Cl4(NPMe3)4(HNPMe3)] · CH3CN, a Phosphorane Iminato Complex with Zr?N Double Bonds The title compound has been prepared from a molten mixture of ZrCl4 with Me3SiNPMe3 in the presence of potassium fluoride and subsequent extraction with acetonitrile. According to the crystal structure determination the zirconium atoms are linked by three μ2-N atoms of two NPMe3? groups and by the HNPMe3 molecule. Two terminal bounded chlorine atoms and a terminally coordinated NPMe3? ligand complete the distorted octahedral surrounding of the zirconium atoms thus forming an edge sharing double octahedron. The ZrN bond lengths of the terminal NPMe3? groups of 194.6 pm correspond with double bonds.  相似文献   

15.
Synthesis and Crystal Structure of Ammine(μ3‐L‐glutamato)copper(II) [Cu(L‐Glu)H2O]·H2O reacts with aqueous ammonia to give the ammine complex [Cu(L‐Glu)NH3] ( 1 ). 1 forms orthorhombic crystals, space group P 21212 with a = 1585,1(1) pm; b = 979,46(7) pm and c = 504,70(5) pm. In the crystal structure of 1 the copper atoms are linked by μ3‐glutamate units to give a 2D layer structure. The copper atoms exhibit a square‐pyramidal coordination with two N atoms and two O atoms in the base plane and one O atom at the apex of the pyramid. The crystal structure is stabilized by a 3D network of N–H···O hydrogen bridges.  相似文献   

16.
Synthesis and Crystal Structure of the μ-Dinitridosulfate(II) Complex [Na-15-crown-5]2[μ-(NSN)(MoF5)2] The title compound is formed at room temperature by the reaction of [MoCl4(NSCl)]2 with the equivalent amount NaF in acetonitrile in presence of the crown ether 15-crown-5. It forms black, moisture-sensitive crystals that were characterized by an X-ray structure determination (1 756 unique observed reflexions, R = 0.073). Crystal data (19°C): a = 965.5, b = 3 219, c = 1 161.1 pm, β = 95.42°; space group P21/n, Z = 4. The structure consists of ion triples in which the [Na-15-crown-5]+ ions are associated with the [μ-(NSN)(MoF5)2]2? ions via Na…?F contacts of 215 to 265 pm length. Each of the two MoF5 units of the anion is linked with one of the N atoms of the dinitridosulfate(II) group; bond angle NSN 103°, MoN bond lengths 172 pm.  相似文献   

17.
Phosphorane Iminato Complexes of Titanium. The Crystal Structures of [TiCl2(NPPh3)2] and [TiCl3(NPMe2Ph)(CH3CN)]2 [TiCl2(NPPh3)2] has been prepared by the reaction of [TiCl3(NPPh3)] with excess Me3SiNPPh3 in a melt at 220°C, forming colourless crystals. [TiCl3(NPMe2Ph)(CH3CN)]2 is formed as yellow, moisture sensitive crystals from acetontrile solutions of [TiCl3(NPMe2Ph)]2, which on its part has been obtained by the reaction of TiCl4 with Me3SiNPMe2Ph. The complexes are characterized by IR spectroscopy and by crystal structure determinations. [TiCl2(NPPh3)2] . Space group Fdd2, Z = 8, structure refinement with 2875 observed unique reflections, R = 0.039. Lattice dimensions at 19°C: a = 2080.9, b = 3308.5, c = 973.6 pm. The compound forms monomeric molecules with bond lengths TiN of 179.0 pm and PN of 156.8 pm, which correspond with double bonds. The bond angle TiNP is 166.6°. [TiCl3(NPMe2Ph)(CH3CN)]2 . Space group P1 , Z = 1, structure refinement with 2577 unique reflections, R = 0.039 for reflections with I > 2σ(I). Lattice dimensions at 20°C: a = 856.6, b = 923.1, c = 1008.3 pm, α = 81.23°, β = 71.63°, γ = 81.41°. The compound forms centrosymmetric, dimeric molecules, in which the titanium atoms are linked via chloro bridges TiCl2Ti with TiCl bond lengths of 243.9 and 270.3 pm. In trans-position to the longer TiCl bonds the nitrogen atoms of the phosphorane iminato groups are coordinated with bond lengths TiN of 173.9 pm and PN of 161.4 pm which again correspond with double bonds. The bond angle TiNP is 156.4°.  相似文献   

18.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry.  相似文献   

19.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

20.
[WCl4(Me3Si? C?C? SiMe3)]2. Synthesis, I.R. Spectrum, and Crystal Structure The title compound is obtained from tungsten hexachloride and bis-trimethylsilyl acetylene in the presence of C2Cl4 in dichloro methane, forming green crystals. The complex is characterized by the mass spectrum, the i.r. spectrum, and by a structural analysis with the aid of X-ray diffraction data. [WCl4(Me3Si? C?C? SiMe3)]2 crystallizes triclinic in the space group P1 with one dimeric formula unit per unit cell (2 231 observed, independent reflexions, R = 4.6%). The cell dimensions are a = 928, b = 938, c = 1 080 pm; α = 115.3°, β = 91.9°, γ = 100.0°. The complex forms centrosymmetric dimers, the units being linked by chloro bridges of bond lengths W? Cl 244 and 272 pm. The trans-position to the long W? Cl bridge is occupied by the acetylene ligand which is bonded side-on with identical W? C bond lengths of 203 pm. Together with the three terminal chlorine ligands (mean W? Cl distance 231 pm) the tungsten atom achieves coordination number seven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号