首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Sodium Oxonitridometallates(VI) of Molybdenum and Tungsten, Na4MO2N2 (M = Mo, W) MoO3 as well as WO3 react with an excess of NaNH2 in autoclaves at temperatures ranging from 250°C to 750°C to yield – in contrast to Ta2O5 [1] – oxonitridometallates of general composition Na4MX4 and other products like Na5WO4N [2]. The compounds decompose in moist air within minutes to Na2WO4, Na2MoO4 and Na2MoO4 · xH2O, respectively. The structures of the Na4MX4 phases were determined from single crystal X-ray diffraction data. They crystallize triclinic in the Na4CoO4-type structure [3] P1 , Z = 2 with the following cell constants:   相似文献   

2.
Preparation of Trifluormethylhalogen Iodate(I) Salts (CH3)4N+CF3IX? (X = F, Cl, Br) and Trifluormethyltrifluormethoxy Iodate(I) (CH3)4N+CF3IOCF3? We describe the preparation of new trifluormethyliodate(I) salts CF3IX? (X = F, Cl, Br, OCF3). (CH3)4N+CF3ICl? and (CH3)4N+CF3IBr? are obtained via addition of CF3I with the corresponded tetramethylammonium halogenide. (CH3)4N+CF3IOCF3? is synthesized by comproportionation of (CH3)4N+CF3ICl? with CF3OCl under formation of Cl2 at ?78°C. (CH3)4N+CF3IF? is formed either, through thermolysis of (CH3)4N+ CF3IOCF3? under separation of COF2, or reaction of CF3I with (CH3)4N+ OCF3?. The thermolabile compounds have been characterized by i.r., Raman, 19F-, 13C NMR spectroscopy.  相似文献   

3.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

4.
IntroductionThe greatsynthetic utility of organolithium reagents has been extended by the introduc-tion ofα-lithium-etherreagents[1— 4] .Those reagentsareeasily prepared,and they can be usedas anionic resources to synthesize a large variety of compounds stereo-selectively[5— 8] .Fur-thermore,such reagents can react with nucleophiles like RLi,only a typical reaction of car-benoid[9,1 0 ] .Though the ambidentnature isof greatinterest,only a little work has been doneon model molecule Li CH2 …  相似文献   

5.
Potassium Oxo Nitrido Mono Cyclo Tungstate(VI), K10[(WN2.5O0.5)4] with Rings of Four Corner‐Sharing Tetrahedra (WX2X2/2)4 with X = N, O Reactions of mixtures of potassium amide, tungsten powder and tungsten(VI) oxide in autoclaves at 650 °C lead to yellow potassium oxo nitrido mono cyclo tungstate (VI), K10[(WN2.5O0.5)4], which crystallizes isotypic to Ba10[(TiN3)4]. After the reaction is finished, crystals are embedded in a matrix of potassium metal. They were isolated by washing out the metal with liquid ammonia. X‐ray investigations showed that K10[(WN2.5O0.5)4] crystallizes in the space group P1 with lattice parameters a = 6.569(5) Å, b = 9.437(2) Å, c = 9.559(3) Å, α = 106.20(2)°, β = 101.93(5)°, γ = 108.20(3)° and Z = 1. The crystal structure contains rings of four corner‐sharing tetrahedra (WX2X2/2)4 with X = N, O which are packed along the a‐axis forming the motif of a hexagonal rod packing of columns. Potassium ions are located mainly between these columns but also within them.  相似文献   

6.
Alkali Metal Nitrido Tecto Metallates(VI) with Networks of Six‐membered Rings of Corner‐sharing Tetrahedra [(MNN3/2)6] with M = Mo, W of the Unexpected Composition A9+x[M6N15] with A = Rb, Cs and 0 < x < 1 Reactions of metal powders of Mo and W respectively with amides and azides of Rb and Cs lead to the compounds Rb9+x[W6N15] and Cs9+x[M6N15] with M = Mo, W and 0 < x < 1. The reactions are carried out at 650 °C in autoclaves for salt melts and are finished within 5 d. Crystals of the compounds are embedded in a matrix of the corresponding alkali metal. These metals result from the thermal decomposition of the amides and azides used in high molar ratios. The metals are washed out by liquid ammonia. Besides microcrystalline material of the above mentioned compounds single crystals suitable in size for x‐ray structure determinations were isolated. The compounds crystallize in the space group R3c (No. 167) with Z = 6 and the following lattice constants: Rb9+x[W6N15]: a = 12.743(7) Å, c = 27.794(8) Å, c/a = 2.181 Cs9+x[Mo6N15]: a = 13.104(5) Å, c = 28.430(9) Å, c/a = 2.170 Cs9+x[W6N15]: a = 13.136(5) Å, c = 28.472(6) Å, c/a = 2.167 The metal centres of tetrahedra [MNN3/2] are condensated to cyclohexane analogue six‐membered rings in chair‐form via nitrogen atoms and axial ones connect them to a three‐dimensional network. Nine – as to the formula unit – of the alkali metal atoms are located in vacancies of the anionic partial structure. The residual atoms with 0 < x < 1 centre the six‐membered rings and are coordinated planar hexagonal by N neighbours.  相似文献   

7.
Synthesis and Crystal Structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an Adamantane-like Anion [P4(NH)6N4]4? Crystals of Na10[P4(NH)6N4](NH2)6(NH3)0.5 were obtained by the reaction of P3N5 with NaNH2 (molar ratio 1:20) within 5 d at 600°C in autoclaves. The following data characterize X-ray investigations: Fm3 m, Z = 8, a = 15.423(2) Å, Z(F) = 261 with F ≥ 3 σ(F) Z(Variables) = 27, R/Rw = 0.086/0.089 The compound contains the hitherto unknown anion [P4(NH)6N4]4?, which resembles adamantane. The total structure can be described as follows: The centers of gravity of units of [Na8(NH2)6(NH3)]2+ – 8Na+ on the corners of a cube, 6NH2? on the ones of an inscribed octahedron with NH3 in the center – follow the motif of a cubic-closest packed arrangement. Units of [Na12(NH2)6]6+ – 12Na+ on the corners of a cuboctahedron and 6NH2? on the ones of an inscribed octahedron – occupy all octahedral and those of [P4(NH)6N4]4? all tetrahedral sites.  相似文献   

8.
9.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

10.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

11.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   

12.
Five 12-MC-4 organotin(IV) metallacrowns(MCs) with the types of [12-MCRSn(IV)N(shi)-4] (R = Et (1), Bu (2), Ph (3); H3Shi = salicylhydroxamic acid) and [12-MCRSn(IV)N(Clshi)-4] (R = Et (4), Bu (5), H3Clshi = 5-chlorosalicylhydroxamic acid) have been synthesized and characterized by elemental analyses, IR and TGA. X-ray single-crystal diffraction analyses were also carried out and showed that all complexes 1-5 contain a neutral 12-membered metallacrown ring which is formed by the succession of four repeating units of -[Sn-N-O]-, indicating the substituents on the tin(IV) atom are uninfluential in coordination of organotin(IV) centers with hydroxamic acid. Fluorescence properties of complexes 1-5 have been investigated, where complex 3 displays strong fluorescence emissions in the blue region. In addition, antitumor activities of complexes 4 and 5 have also been tested, and both the complexes exhibit weak activity towards human hepatocellular carcinoma cell line (Bel-7402) and Hela cell line.  相似文献   

13.
Synthesis and Crystal Structure of Cu4[PhN3C6H4N3(H)Ph]42-O)2, a Tetranuclear Copper(II) Complex with 1-Phenyltriazenido-2-phenyltriazeno-benzene as Ligand Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2 ( 1 ) results from the reaction of an aqueous solution of [Cu(NH3)4]2+ with 1,2-bis(phenyltriazeno)benzene in ether. 1 crystallizes in the orthorhombic space group Pba2 with the lattice parameters a = 1661.5(5), b = 1914.7(7), c = 1269.2(5) pm; Z = 2. In the tetrameric complex with the symmetry C2 the Cu2+ cations form a tetrahedron (Cu? Cu: 298.3(1)?337.1(1) pm). The μ2-oxo ligands occupy the twofold axis and bridge two opposite edges of the Cu4 tetrahedron (Cu? O: 190.0(3) and 192.5(4) pm). The 1-phenyltriazenido-2-phenyltriazeno benzene anions bridge two Cu2+ ions chelating one metal ion and coordinating monodentate the neighbouring one (Cu? N: 191.0(5)–204.1(4) pm).  相似文献   

14.
Ternary Selenides of the Lanthanides with Alkali Metals: I. The Composition Cs3M7Se12 (M = Gd–Ho) When the lanthanides gadolinium, terbium, dysprosium and holmium are oxidized with selenium in a molar ratio of 2 : 3 in evacuated silica tubes (700 °C, 7 d) and CsCl is added, ternary cesium lanthanide selenides with the composition Cs3M7Se12 (M = Gd–Ho) readily form. Surplus CsCl as flux accelerates the crystallization of the yellow, transparent needles. Since these crystals are stable to hydrolysis, excess CsCl and the chloride by-products (e. g. Cs3MCl6) can be rinsed off easily with water. The crystal structure of the flanking representatives Cs3Gd7Se12 and Cs3Ho7Se12 (orthorhombic, Pnnm (no. 58), Z = 2; Cs3Gd7Se12: a = 1294.8(3), b = 2650.1(5), c = 419.36(9) pm, R1 = 0.098, wR2 = 0.173; Cs3Ho7Se12: a = 1280.4(3), b = 2621.2(5), c = 412.13(8) pm, R1 = 0.096, wR2 = 0.126) was determined and refined on the basis of X-ray data from single crystals. With the help of powder diffraction Cs3Tb7Se12 (a = 1289.4(1), b = 2640.3(2), c = 416.82(3) pm) and Cs3Dy7Se12 (a = 1285.3(1), b = 2631.5(2), c = 414.47(3) pm) were established to be isotypic. The four new compounds crystallize isostructurally with Cs3Y7Se12, so that a three-dimensional framework {[M7Se12]3–} of vertex- and edge-sharing [MSe6] octahedra is present. Wave-like, one-dimensional infinite ”︁triple-channels”︁ run through the structure along [001] which are filled with two crystallographically different Cs+ cations (CN(Cs1) = 7 + 1, CN(Cs2) = 6). Owing to much too close Cs+–Cs+ contacts only a semi-occupation is possible for the Cs2 position which the structure refinements inevitably prove.  相似文献   

15.
We report a series (a)-(d) of tandem reactions involving the conversion of: (a) 2CH2(SiMe3)P(Ph)2NSiMe3 [2H(LL′)] (III) into successively [Li(LL′)]2 (1a) and [Pb(LL′)2] (3a); (b) 1a in turn into {[Li(LL″)]2} (2) and [Pb(LL″)2] (4); (c) 1a successively into Sn(LL′)Cl (5) and [Sn(LL″)2] (6); (d) (1b) into (3b). Experimental details for the preparation and characterisation (including elemental analysis and multinuclear NMR spectra in C6D6 and EI mass spectra) of 1a, 2, 3a, 3b, 4, 6, III (a new synthesis) and IV are provided. The X-ray structures of crystalline 4, 6, III and IV are presented; those of 1a, 2 and 3a were previously published.  相似文献   

16.
Polysulfonyl Amines. LXXIII. Metal(II) Dimesylamide Tetrahydrates: The Dimesylamide Anion as a Monodentate O-Ligand and a Tetrafunctional Hydrogen Bond Acceptor in the Isotypic Complexes [M(H2O)4{(CH3SO2)2N}2], where M = Magnesium, Nickel, Copper, or Zinc By treating aqueous HN(SO2CH3)2 solutions with the appropriate metal hydroxides, oxides, or carbonates, the crystalline tetrahydrates M[(CH3SO2)2N]2 · 4 H2O (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) were obtained and analytically characterized. The crystal structures of the Mg, Ni, Cu and Zn compounds, as determined by single-crystal X-ray diffraction at low temperatures, reveal an isotypic series (triclinic, space group P1 , Z = 1). The structures consist of centrosymmetric trans-octahedral [M(H2O)4{(CH3SO2)2N}2] molecules in which the anionic ligand acts as a monodentate O-donor. For the Mg, Ni and Zn complexes, the M? OH2 and M? O(anion) distances lie in the ranges 203–206 pm and 209–214 pm, respectively. The copper compound features a marked Jahn-Teller distortion with Cu? OH2 = 195.8 and 197.7 pm and Cu? O(anion) = 232.5 pm. The cis-angles O? M? O of the four molecules do not deviate appreciably from 90°. The complex units are associated through a highly organized three-dimensional hydrogen bond network in which all the water protons act as donors and the non-coordinating oxygen atoms and the nitrogen atom of the anionic ligand are involved as acceptors. The H-bond pattern is subjected to a graph-theoretical analysis at the first and second levels.  相似文献   

17.
Amido Metalates of Rare Earth Elements. Syntheses and Crystal Structures of [Na(12-crown-4)2][M{N(SiMe3)2}3(OSiMe3)] (M = Sm, Yb), [Na(THF)3Sm{N(SiMe3)2}3(C≡C–Ph)], [Na(THF)6][Lu2(μ-NH2)(μ-NSiMe3){N(SiMe3)2}4], and of [NaN(SiMe3)2(THF)]2. Applications of Rare Earth Metal Complexes as Polymerization Catalysts The amido silyloxy complexes [Na(12-crown-4)2][M{N(SiMe3)2}3(OSiMe3)] with M = Sm ( 1 a ), Eu ( 1 b ), Yb ( 1 c ), and Lu ( 1 d ) were obtained from the trisamides M[N(SiMe3)3]3 and NaOSiMe3 in n-hexane in the presence of 12-crown-4; they form yellow to orange-red crystals, of which 1 a and 1 c were characterized crystallographically. The complexes crystallize isotypically with one another in the monoclinic space group I2/a with eight formula units per unit cell. The metal atoms of the complex anions are tetrahedrally coordinated by the three nitrogen atoms of the N(SiMe3)2 ligands and by the oxygen atom of the OSiMe3 ligand. With 172.4° for 1 a and 179.3° for 1 c the bond angles M–O–Si are practically linear. With ethynylbenzene in the presence of NaN(SiMe3)2 in tetrahydrofuran the trisamides M[N(SiMe3)2]3 react under formation of the complexes [Na(THF)3M{N(SiMe3)2}3 · (C≡C–Ph)] with M = Ce ( 2 a ), Sm ( 2 b ), and Eu ( 2 c ), of which 2 b was characterized crystallographically (monoclinic, space group P21/n, Z = 4). 2 b forms an ion pair in which the terminal carbon atom of the C≡C–Ph ligand is connected with the samarium atom of the Sm[N(SiMe3)2]3 group and the sodium ion is side-on connected with the acetylido group. According to the crystal structure determination (space group P212121, Z = 4) [Na(THF)6][Lu2(μ-NH2)(μ-NSiMe3) · {N(SiMe3)2}4] ( 3 ), which is formed as a by-product, consists of [Na(THF)6]+ ions and dimeric anions, in which the lutetium atoms are connected to form a planar Lu2N2 four-membered ring via a μ-NH2 bridge with average Lu–N distances of 227.2 pm and via a μ-NSiMe3 bridge of average Lu–N distances of 218.5 pm. According to the crystal structure determination (space group P 1, Z = 1) [NaN(SiMe3)2(THF)]2 ( 4 ) forms centrosymmetric dimeric molecules with Na–N distances of the Na2N2 four-membered ring of 239.9 pm and distances Na–O of the terminally bonded THF molecules which are 226.7 pm. The vinylic polymerization of methylmethacrylate (MMA) catalyzed by 1 c resulted in high molecular weight polymethylmethacrylate (PMMA) with moderate yields. The reaction of 1 a or 2 b with MMA did not give PMMA. Insoluble polynorbornene was obtained in low yields by reaction of norbornene/methylaluminoxane (MAO) with 1 a , 1 c , or 2 b . The ring opening polymerization of ϵ-caprolacton or δ-valerolacton catalyzed by 2 b resulted in corresponding polylactones in quantitative yields.  相似文献   

18.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号