首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs‐laser direct writing via two‐photon polymerization (2PP) to fabricate PPV‐doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs‐laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer‐based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 479–483  相似文献   

2.
《Supramolecular Science》1995,2(3-4):199-207
The fabrication of polyelectrolyte multilayer film architectures composed of a polycation precursor (Pre-PPV) of the electroluminescent poly(p-phenylene vinylene) (PPV) and two different counter-polyanions, cellulosesulfate and poly(vinylsulfate), are reported. All multilayers were characterized by UV/VIS-spectroscopy and X-ray reflectometry. Due to the differences in spatial arrangement of charged groups, rigidity, and conformation of the polyanions, the corresponding multilayer films differ in properties such as average thickness increments and surface roughness. The adsorbed amounts per layer can be adjusted by addition of inorganic salts. Thermal conversion of Pre-PPV to PPV is achieved already slightly above 100 °C, yielding identical absorption spectra for after either 3 h at 160 °C or 20 h at 120 °C. The heat treatment causes the film thickness to be reduced by 24–40% due to elimination of dimethylsulfide and HCl and also the loss of water, but the films stay optically transparent.  相似文献   

3.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

5.
The synthesis of two new polyphenylene vinylene (PPV) precursor polymers which can be thermally induced to eliminate pentanol is presented. Pentanol has recently been discovered to be a very useful lubricant in MicroElectroMechanical Systems. The utilization of the elimination reaction of precursor polymers to PPV as a small molecule delivery platform has, to the best of our knowledge, not been previously reported. The elimination reactions were examined using thermal gravimetric analysis, gas chromatography, and UV–Vis spectroscopy. Using PPV precursors allows for (1) a high loading of lubricant (one molecule per monomeric unit), (2) a platform that requires relatively high temperatures (>145 °C) to eliminate the lubricant, and (3) a non‐volatile, mechanically and chemically stable by‐product of the elimination reaction (PPV).  相似文献   

6.
A bis(ether amine) containing the ortho‐substituted phenylene unit and pendant tert‐butyl group, 1,2‐bis(4‐aminophenoxy)‐4‐tert‐butylbenzene, was synthesized and used as a monomer to prepare polyimides with six commercial dianhydrides via a conventional two‐stage procedure. The intermediate poly(amic acid)s had inherent viscosities of 0.78–1.44 dL/g, and most of them could be thermally converted into transparent, flexible, and tough polyimide films. The inherent viscosities of the resulting polyimides were in the range of 0.46–0.87 dL/g. All polyimides were noncrystalline, and most of them showed excellent solubility in polar organic solvents. The glass‐transition temperatures of these polyimides were in the range of 222–259 °C in differential scanning calorimetry and 212–282 °C in thermomechanicl analysis. These polyimides showed no appreciable decomposition up to 500 °C in thermogravimetric analysis in air or nitrogen. A comparative study of the properties with the corresponding polyimides without pendant tert‐butyl groups derived from 1,2‐bis(4‐aminophenoxy)benzene is also presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1551–1559, 2000  相似文献   

7.
A new diamine containing isopropylidene, methyl substituted arylene ether, and trifluoromethyl groups, 2,2‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)‐3,5‐dimethylphenyl]propane (BTADP), was synthesized and used in preparation of a series of polyimides by direct polycondensation with various aromatic tetracarboxylic dianhydrides in N, N‐dimethylacetamide (DMAc). All polymers derived from diamine (BTADP) with trifluoromethyl substituents were highly organosoluble in the solvents, like N‐methyl‐2‐pyrrolidinone (NMP), N,N‐dimethylacetamide, N,N‐dimethylformamide (DMF), pyridine, chloroform, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dichloromethane, cyclohexanone, and γ‐butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polyimides were found to range between 0.58 and 0.97 dL·g?1. These polyimides had glass transition temperatures between 256 and 307 °C, and their 10% mass loss temperatures ranged from 440 to 462 °C and 421 to 443 °C under nitrogen and air, respectively. These polyimides had low dielectric constants in the range of 2.84–3.09. All the polyimides could be cast into films from DMAc solutions and were thermally converted into color lightness, optically transparent, flexible, and tough polyimides. The polyimide films had a tensile strength in the range of 83–97 MPa and a tensile modulus in the range of 2.0–2.2 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5766–5774, 2004  相似文献   

8.
A soluble poly(amic acid) precursor solution of fully rod-like poly(p-phenylene pyromellitimide) (PMDA-PDA) was spin cast on silicon substrates, followed by soft bake at 80–185°C and subsequent thermal imidization at various conditions over 185–400°C in nitrogen atmosphere to be converted to the polyimide in films. Residual stress generated at the interface was measured in situ during imidization. In addition, the imidized films were characterized in the aspect of polymer chain orientation and ordering by prism coupling and X-ray diffraction. The soft-baked precursor film revealed a residual stress of 16–28 MPa at room temperature, depending on the soft bake condition: higher temperature and longer time in the soft bake gave higher residual stress. The stress variation in the soft-baked precursor film was not significantly reflected in the final stress in the resultant polyimide film. However, the residual stress in the polyimide film varied sensitively with variations in imidization process parameters, such as imidization temperature, imidization steps, heating rate, and film thickness. The polyimide film exhibited a wide range of residual stress, −7 MPa to 8 MPa at room temperature, depending on the imidization condition. Both rapid imidization and low-temperature imidization generated high stress in the tension mode in the polyimide film, whereas slow imidization as well as high temperature imidization gave high stress in the compression mode. Thus, a moderate imidization condition, a single- or two-step imidization at 300°C for 2 h with a heating rate of < 10 K/min was proposed to give a relatively low stress in the polyimide film of < 10 μm thickness. However, once a precursor film was thermally imidized at a chosen process condition, the residual stress–temperature profile was insensitive to variations in the cooling process. All the films imidized were optically anisotropic, regardless of the imidization history, indicating that rod-like PMDA-PDA polyimide chains were preferentially aligned in the film plane. However, its degree of in-plane chain orientation varied on the imidization history. It is directly correlated to the residual stress in the film, which is an in-plane characteristic. For films with residual stress in the tension mode, higher stress films exhibited lower out-of-plane birefringence, that is, lower in-plane chain orienta-tion. In contrast, in the compression mode, higher stress films showed higher in-plane chain orientation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1261–1273, 1998  相似文献   

9.
Four series of poly(o-hydroxy amide)s were prepared by the low-temperature solution polycondensation of the bis(ether benzoyl chloride)s extended from hydroquinone and its methyl-, tert-butyl-, or phenyl-substituted derivatives with three bis(o-aminophenol)s. Most of the poly(o-hydroxy amide)s displayed an amorphous nature, were readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), and could be solution-cast into flexible and tough films. These poly(o-hydroxy amide)s had glass transition temperatures (Tg) in the range of 152–185°C and could be thermally cyclodehydrated into the corresponding polybenzoxazoles approximately in the region of 200–400°C, as evidenced by the DSC thermograms. The thermally converted benzoxazole polymers exhibited Tgs in the range of 215–247°C and did not show significant weight loss before 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2129–2136, 1999  相似文献   

10.
High‐molecular‐weight polybenzoxazine prepolymers containing polydimethylsiloane unit in the main‐chain have been synthesized from α,ω‐bis(aminopropyl)polydimethylsiloxane (PDMS) (molecular weight = 248, 850, and 1622) and bisphenol‐A with formaldehyde. Moreover, another type of prepolymers was prepared using methylenedianiline (MDA) as codiamine with PDMS. The weight average molecular weight of the obtained prepolymers was estimated from size exclusion chromatography to be in the range of 8000–11,000. The chemical structures of the prepolymers were investigated by 1H NMR and IR analyses. The prepolymers gave transparent free standing films by casting their dioxane solution. The prepolymer films after thermally cured up to 240 °C gave brown colored transparent and flexible polybenzoxazine films. Tensile test of the films revealed that the elongation at break increased with increasing the molecular weight of PDMS unit. Dynamic mechanical analysis of the thermosets showed that the Tgs were as high as 238–270 °C. The thermosets also revealed high thermal stability as evidenced by the 5% weight loss temperatures in the range of 324–384 °C from thermogravimetic analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
A new aromatic diamine, 4-(4-trifluoromethyl)phenyl-2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]pyridine, was synthesized by a modified Chichibabin reaction of 4-(4-nitro-2-trifluoromethylphenoxy)acetophenone with 4-triflouromethylbenzaldehyde, followed by catalytic reduction. A series of fluorinated pyridine-containing aromatic poly(ether imide)s (PEIs) were prepared from the diamine monomer with various aromatic dianhydrides via conventional two-step thermal imidization method. The resulting PEIs had inherent viscosities values of 0.68–0.90 dL/g, and could be cast and thermally converted into transparent, flexible, and tough polymer films. These PEIs were predominantly amorphous, had good solubility in common solvents such as NMP, DMAc and m-cresol at room temperature, and displayed excellent thermal stability with the glass transition temperatures of 258–315?°C, the temperatures at 5% weight loss of 550–585?°C, and the residue of higher than 55% at 750?°C in nitrogen. Moreover, the PEIs films showed outstanding mechanical properties with tensile strengths of 74.8–103.5?MPa, tensile moduli of 1.08–1.45?GPa, and elongations at break of 10.6–24.4%. These PEIs also exhibited low dielectric constants of 2.81–2.98 (1?MHz) and water uptake 0.39–0.68%, as well as high optical transparency with the UV cutoff wavelength in the 350–378?nm range and the wavelength of 80% transparency in the range of 412–510?nm.  相似文献   

12.
We could prepare highly electrically conducting graphitic carbon films and nano patterns by carbonizing the poly(p-phenylenevinylene) (PPV) films and nano patterns prepared on the silicon surface by the chemical vapor deposition polymerization method of α,α'-dichloro-p-xylene. When the PPV films on silicon wafers were thermally treated at 850°C highly oriented graphitic carbon films were obtained which exhibit an electrical conductivity higher than 0.7 x 103 Scm−1. This conductivity value is more than 10 times the value for the carbon films obtained from bulk PPV films or glassy carbons heat treated at the same temperature. Moreover, nano patterns of graphitic carbons were easily obtained on silicon wafers through carbonization of nano patterned PPV obtained by the CVD polymerization method.  相似文献   

13.
This paper reports the thermal conversion of the tetrahydrothiophene (THT)‐precursor to poly(p‐phenylene vinylene) (PPV). Detailed investigations of the conversion process show that the leaving groups THT and HCl do not eliminate simultaneously. Moderate temperatures (≤125 °C) are sufficient to eliminate the THT while a higher temperature of ≈150 °C is necessary for the leaving group HCl. Furthermore, the THT groups split off at two characteristic temperatures. Our investigations have shown that a consistent picture of the reaction mechanism can only be obtained if the configuration of the polymer chain is considered. For the total reaction of the THT‐precursor to PPV a reaction mechanism is suggested that consists of at least four steps. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Polycrystalline β-zinc sulfide thin films were prepared by solution pyrolysis of an ethylzinc isopropylthiolate–zinc bis(dibutyldithiocarbamate) combined precursor (EtZnSiPr–Zn(S2CNnBu2)2) in chloroform solution on glass or silicon(111) substrates at 300°C. Homogeneous but amorphous indium sulfide thin films were obtained from butylindium bis(isopropylthiolate) (nBuInSiPr2) in P-xylene on these substrates at 300°C similarly. The sulfide thin films obtained were characterized by means of X-ray photoelectron spectroscopy (XPS), X-ray fluorescence Microanalysis, scanning electron microscopy (SEM) and optical band gap measurements.  相似文献   

15.
A new aromatic asymmetrical ether diamine, 5‐(4‐aminophenoxy)‐1‐naphthylamine, was synthesized through the nucleophilic displacement of 4‐chloronitrobenzene with the potassium phenolate of 5‐amino‐1‐naphthol in dimethylformamide, followed by hydrazine palladium‐catalyzed reduction. A series of novel aromatic polyimides containing asymmetrical diaryl ether segments were prepared from the diamine with various aromatic dianhydrides via a conventional two‐step thermal or chemical imidization method. The poly(amic acid) precursors had inherent viscosities of 1.21–1.99 dL/g, and all of them could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides derived from less stiff dianhydrides generally displayed higher solubility. The glass‐transition temperatures of these polyimides were recorded between 307 and 336 °C by differential scanning calorimetry, and the softening temperatures of the polymer films were 299–344 °C according to thermomechanical analysis. The polyimides showed insignificant decomposition before 520 °C in air or nitrogen. For a comparative study, two series of analogous polyimides based on symmetrical diamines such as 1,5‐diaminonaphthalene and 1,5‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 331–341, 2005  相似文献   

16.
Polyetherimide hybrid films containing 5–40% silica were prepared through a sol-gel process and thermal imidization by using methyltriethoxysilane as precursor of the inorganic network and a poly(amic acid) resulting from polycondensation reaction of 2,2-bis[4-(4-aminophenoxy)phenyl]propane with 2,2-bis[(3,4-dicarboxyphenoxy)phenyl]propane dianhydride. The properties of these films, morphology, water vapor sorption capacity, free surface energy, mechanical, thermal and electrical characteristics, were studied. The films exhibited good thermal stability, having an initial decomposition temperature above 470 °C and glass transition temperature in the range of 187–200 °C. They showed low dielectric constant and low dielectric loss in a large frequency field. Gas permeation tests using small molecules (He, N2, O2 and CO2) at 6 bar and 30 °C indicated that the hybrid films containing higher silica content showed higher permeability for all the tested gases.  相似文献   

17.
The photoinitiated elimination of methoxy groups of poly(p-phenylene-1-methoxyethylene) and the photochemical doping of the resulting poly(phenylenevinylene) (PPV) were investigated. Upon irradiation and then heat treatment at 150°C, poly(p-phenylene-1-methoxyethylene) containing triphenylsulfonium hexafluoroantimonate was converted to PPV. The resulting PPV was observed to be conductive, and its conductivity was 10−2–10−3 S/cm. By a lithographic procedure, we produced a conducting pattern doped photochemically in a nonconjugated poly(p-phenylene-1-methoxyethylene) matrix.  相似文献   

18.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

19.
A new cardo diamine monomer, 5,5-bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane (II), was prepared in two steps with high yield. The monomer was reacted with six different aromatic tetracarboxylic dianhydrides in N,N-dimethylacetamide (DMAc) to obtain the corresponding cardo polyimides via the poly(amic acid) precursors and thermal or chemical imidization. All the poly(amic acid)s could be cast from their DMAc solutions and thermally converted into transparent, flexible, and tough polyimide films which were further characterized by x-ray and mechanical analysis. All of the polymers were amorphous and the polyimide films had a tensile strength range of 89–123 MPa, an elongation at break range of 6–10%, and a tensile modulus range of 1.9–2.5 GPa. Polymers Vc, Ve, and Vf exhibited good solubility in a variety of solvents such as N-methyl-2-pyrrolidinone (NMP), DMAc, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, γ-butyrolactone, and even in tetrahydrofuran and chloroform. These polyimides showed glass-transition temperatures between 274 and 299°C and decomposition temperatures at 10% mass loss temperatures ranging from 490 to 521°C and 499 to 532°C in nitrogen and air atmospheres, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2815–2821, 1999  相似文献   

20.
A poly(p‐phenylenevinylene) derivative (PPV–TPA)] and a series of statistical copolyfluorenes (PF–TPA)] containing oxadiazole and triphenylamine segments along the main chain were synthesized by the Heck reaction and nickel‐mediated coupling, respectively. The PF–TPA copolyfluorenes with relatively low contents of oxadiazole and triphenylamine units were readily soluble in common organic solvents, whereas the other copolyfluorenes displayed lower solubility. PPV–TPA showed excellent solubility in solvents such as tetrahydrofuran (THF), dichloromethane, chloroform, and toluene. Thin films of the polymers absorbed light in the range of 375–396 nm and had optical band gaps of 2.76–2.98 eV. They emitted blue‐green light with a maximum at 414–522 nm. The fluorescence quantum yields in THF solutions were 0.08–0.53. The copolyfluorene PF–TPA thin films with high contents of oxadiazole and triphenylamine moieties emitted pure blue light that remained stable even after annealing at 150 °C for 4 h in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3556–3566, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号