首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear-medical diagnostic methods are widely used at present, examples being localization diagnosis e.g. of the thyroid, the kidney, and the spleen and function tests, e.g. on the thyroid and on the liver. For these tests it is essential to have organ-specific vehicle substances that can be labeled with suitable radionuclides. For in-vivo investigations, the exposure of the patient to radiation should be kept as small as possible, but the radiation must nevertheless be sufficient to allow the detection of the nuclide. Today, the therapeutic use of radionuclides is only small in comparison with their use in diagnosis.  相似文献   

2.
Cyclobis(paraquat-p-phenylene), also known as “blue box”, is a highly electron-deficient macrocycle, widely used as a molecular receptor for small electron-rich molecules. Inserting a reactive functional group onto the molecular structure of this cyclophane is paramount for its inclusion into complex architectures. To this aim, including an alkyne moiety would be ideal, because it can participate in click reactions. However, the synthesis of such alkyne-functionalized cyclophane suffers from several drawbacks: the use of toxic and expensive CCl4, the need for high-pressure reactors, and overall low yield. We have revised the existing synthesis of this cyclophane derivative bearing an alkyne moiety, to overcome all these limitations. In particular, photochemical radical bromination is adopted to obtain a sensitive intermediate. We demonstrated that the synthesized host molecule can be functionalized via click reactions and take part in radical-radical interactions. Our work makes a key functionalized paraquat macrocycle more accessible, facilitating the development of novel redox-responsive systems.  相似文献   

3.
Modern digital methods and powerful computers make it possible to simulate the time behavior of chemical reactions. These calculations can be performed on systems containing an almost unlimited number of elementary reactions. Generally, however, the reaction models used should contain only those elementary reactions which describe the bulk of the conversion. Such a reaction model may be obtained by reduction of the complete set of elementary reactions. Another possibility is analysis of the chemical system starting from conditions ensuring a simple chemistry, which is generally the case at low temperatures and low conversions. The reaction model may then be extended into the range of the reaction variables (temperature, time) of interest. Mathematical simulations may be helpful during the development of the reaction model, and sometimes even decisive. These methods were applied to the pyrolysis of ethylbenzene and n-hexane, and to CO oxidation. They yield information on the reaction paths, the importance of particular elementary reactions, and reaction stability. Furthermore, quantitative data can be obtained concerning the influence of single elementary reactions on the product distribution. The sensitivity matrix shows, e.g., whether the determination of kinetic parameters of an elementary reaction from kinetic data of the overall reaction is possible in principle, and how high the accuracy of the rate constants should be for simulation of the reaction. Both results are important for modeling chemical reactions.  相似文献   

4.
First the interplay of kinetic and potential energy via the uncertainty relation is described with the aid of a variational function for the ground state of the H atom. The H ion is used to illustrate the physical mechanism of the occurrence of the chemical bond. The formation of the chemical bond can be divided into three steps: 1. the quasi-classical (electrostatic) interaction of the unchanged electronic charges of the separate atoms; 2. the interference of the atomic orbitals, which (in the case of positive interference) leads to a displacement of charge into the bonding region and to a decrease in the kinetic energy; 3. deformation of the molecular orbitals to restore the correct balance of kinetic and potential energy. In simple models, it is often sufficient to consider just the second step. A two-electron bond is not fundamentally different from a one-electron bond. In larger molecules it is possible to distinguish between long-range and short-range interatomic contributions to the chemical bond. If the former are small, i. e. in molecules with non-polar bonds, a one-electron molecular orbital theory can be justified. Finally, the possibility of describing molecules by localized bonds is discussed.  相似文献   

5.
A comprehensive conformational analysis of both 2,3‐difluorobutane diastereomers is presented based on density functional theory calculations in vacuum and in solution, as well as NMR experiments in solution. While for 1,2‐difluoroethane the fluorine gauche effect is clearly the dominant effect determining its conformation, it was found that for 2,3‐difluorobutane there is a complex interplay of several effects, which are of similar magnitude but often of opposite sign. As a result, unexpected deviations in dihedral angles, relative conformational energies and populations are observed which cannot be rationalised only by chemical intuition. Furthermore, it was found that it is important to consider the free energies of the various conformers, as these lead to qualitatively different results both in vacuum and in solvent, when compared to calculations based only on the electronic energies. In contrast to expectations, it was found that vicinal syn‐difluoride introduction in the butane and by extension, longer hydrocarbon chains, is not expected to lead to an effective stabilisation of the linear conformation. Our findings have implications for the use of the vicinal difluoride motif for conformational control.  相似文献   

6.
The 1,2‐ and 1,4‐asymmetric additions of dialkylzinc reagents (ZnMe2 and ZnEt2) to cinnamaldehyde and N‐formylbenzylimine catalysed by [2.2]paracyclophane‐based N,O‐ligands were studied with quantum chemical methods. High level LPNO‐CEPA/1 (local pair natural orbital coupled electron pair approximation 1) calculations were performed to obtain reliable reaction barriers and binding energies. The calculations supported the experimentally observed selectivities. In the reaction, the alkyl transfer takes place on a binuclear zinc complex. Regioselectivity can be traced back to changes in π‐conjugation. Because the less conjugated N‐formylbenzylimine is more flexible, it is better suited for 1,4‐additions. Moreover, bulky ligands were shown to be important for stereoselectivity. The reason is that the tricyclic motif present in the transition states is sterically less hindered in the anti conformation. Based on the LPNO‐CEPA/1 data, a set of popular theoretical methods are validated. Although it was possible to set up a procedure to obtain the stereoselectivities with computationally less demanding methods, this was not possible for the regioselectivity of the reactions.  相似文献   

7.
Surface modifications are keys for a great number of applications. In order to perfectly control the surface properties, it is important to control the modification pathways. Two general pathways can be described in order to introduce modification on surfaces: the post‐strategies and the ante‐strategies. In this work, we focus on the comparison between the Huisgen and the Staudinger–Vilarrasa reaction for both post‐surface and ante‐surface modifications. Here, we focused on the possibility to use both two reactions to obtain superhydrophobic and oleophobic properties. This work includes monomer synthesis, surface modifications with alkyl, aryl or perfluoroalkyl chain. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
High‐pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the 15N‐enriched peptide bond model, N‐methylacetamide (NMA), in water, combined with quantum‐chemical computations of the magnetic parameters using a pressure‐sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4‐dimethyl‐4‐silapentane‐1‐sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent‐induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure‐induced changes of the magnetic susceptibility of the solvent.  相似文献   

9.
A catalytic system based on monolayer‐functionalized gold nanoparticles (Au NPs) that can be electrochemically modulated and reversibly activated is reported. The catalytic activity relies on the presence of metal ions (Cd2+ and Cu2+), which can be complexed by the nanoparticle‐bound monolayer. This activates the system towards the catalytic cleavage of 2‐hydroxypropyl‐p‐nitrophenyl phosphate (HPNPP), which can be monitored by UV/Vis spectroscopy. It is shown that Cu2+ metal ions can be delivered to the system by applying an oxidative potential to an electrode on which Cu0 was deposited. By exploiting the different affinity of Cd2+ and Cu2+ ions for the monolayer, it was also possible to upregulate the catalytic activity after releasing Cu2+ from an electrode into a solution containing Cd2+. Finally, it is shown that the activity of this supramolecular nanosystem can be reversibly switched on or off by oxidizing/reducing Cu/Cu2+ ions under controlled conditions.  相似文献   

10.
Infrared spectra simulations require ab initio techniques to get reliable intensities. On the other hand, recent force fields can provide accurate molecular geometries and frequencies. Therefore, it is suggested that these new force fields could be used to simulate infrared spectra, dipole-moment surfaces being described at high levels of theory in order to get satisfactory intensities. As pointed out, for a system with N atoms, the cost of such a simulation would be reduced N-fold with respect to standard quantum approaches. Preliminary calculations based on this scheme are reported here. Encouraging results are obtained since no significant lost of accuracy is noted on going from the ab initio to the molecular mechanics potential energy surface. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 705–711, 1998  相似文献   

11.
During recent decades it has become feasible to simulate the dynamics of molecular systems on a computer. The method of molecular dynamics (MD) solves Newton's equations of motion for a molecular system, which results in trajectories for all atoms in the system. From these atomic trajectories a variety of properties can be calculated. The aim of computer simulations of molecular systems is to compute macroscopic behavior from microscopic interactions. The main contributions a microscopic consideration can offer are (1) the understanding and (2) interpretation of experimental results, (3) semiquantitative estimates of experimental results, and (4) the capability to interpolate or extrapolate experimental data into regions that are only difficultly accessible in the laboratory. One of the two basic problems in the field of molecular modeling and simulation is how to efficiently search the vast configuration space which is spanned by all possible molecular conformations for the global low (free) energy regions which will be populated by a molecular system in thermal equilibrium. The other basic problem is the derivation of a sufficiently accurate interaction energy function or force field for the molecular system of interest. An important part of the art of computer simulation is to choose the unavoidable assumptions, approximations and simplifications of the molecular model and computational procedure such that their contributions to the overall inaccuracy are of comparable size, without affecting significantly the property of interest. Methodology and some practical applications of computer simulation in the field of (bio)chemistry will be reviewed.  相似文献   

12.
The dimerization of glycine is the simplest oligomerization of amino acids and plays an important role in biology. Although this reaction is thermodynamically unfavorable in the aqueous phase, it has been shown to be spontaneous in the gas phase and proceeds via two different concerted reaction mechanisms known as cis and trans. This may have profound implications in prebiotic chemistry as common atmospheric prenucleation clusters are thought to have participated in gas-phase reactions in the early Earth's atmosphere. We hypothesize that particular arrangements of water molecules in these clusters could lead to lowering of the reaction barrier of amino acid dimerization and could lead to abiotic catalysis toward polypeptides. We test our hypothesis on a system of the cis transition state of glycine dimerization solvated by one to five water molecules using a combination of a genetic algorithm-based configurational sampling, density functional theory geometries, and domain-based local pair natural orbital coupled-cluster electronic structure. First, we discuss the validity of the model chemistries used to obtain our results. Then, we show that the Gibbs free energy barrier for the concerted cis mechanism can indeed be lowered by the addition of up to five water molecules, depending on the temperature.  相似文献   

13.
The chemical reaction of arthropods to their environment, i.e. their chemical ecology, can be studied particularly well with water beetles. Stenus comma, an aquatic beetle weighing only 2.5 mg, saves itself from drowning with the aid of an alkaloid, and the water beetle Ilybius fenestratus defends itself against small mammalian predators with a compound belonging to the same class. The water beetle Platambus maculatus employs a diterpene for precisely the same purpose and the whirligig beetle a norsesquiterpene, which also offers protection against troublesome microorganisms. As chemical artists, the ants can hardly be surpassed. In particular, the myrmecine ants guarantee their food supplies with plant growth substances. Since these compounds, depending upon concentration, can also act as inhibitors, we are confronted with an excellent example of an ecological equilibrium being established with the aid of organic chemicals. Even the little parasitic bombardier beetle Paussus favieri is tolerated, on account of its defensive chemistry, in the nest of the myrmecine ant Pheidole. In contrast, inorganic compounds are largely responsible for the stability of spiders' webs.  相似文献   

14.
The discovery of nuclear fission is one of the most outstanding episodes in the history of chemistry: It starts in the spring of 1934 when Enrico Fermi and his group irradiate uranium with neutrons and seem to succeed in going beyond uranium, the then heaviest known element, reaching the first transuranic element; it continues with Otto Hahn, Lise Meitner and Fritz Strassmann who believe to have found additional transuranic elements; with Irène Curie and Paul Savitch who observe an activity which somehow does not fit into that scheme; again with Otto Hahn and Fritz Strassmann who first identify this activity as radium but then on the 17th of December 1938 after rigorous chemical tests realize that the activity is instead barium, thus discovering the fission of the uranium atom into two lighter nuclei; and with Lise Meitner and Otto Robert Frisch who explain nuclear fission on the basis of an already known nuclear model; Otto Robert Frisch finally performs a physical experiment on the 13th of January 1939 which corroborates the fission of uranium. This discovery of nuclear fission is not only an event of historic dimensions, it is also an excellent example of how science evolves, not by successive logical steps but rather through strange detours.  相似文献   

15.
RNA-RNA interactions are essential for biology, but they can be difficult to study due to their transient nature. While crosslinking strategies can in principle be used to trap such interactions, virtually all existing strategies for crosslinking are poorly reversible, chemically modifying the RNA and hindering molecular analysis. We describe a soluble crosslinker design (BINARI) that reacts with RNA through acylation. We show that it efficiently crosslinks noncovalent RNA complexes with mimimal sequence bias and establish that the crosslink can be reversed by phosphine reduction of azide trigger groups, thereby liberating the individual RNA components for further analysis. The utility of the new approach is demonstrated by reversible protection against nuclease degradation and trapping transient RNA complexes of E. coli DsrA-rpoS derived bulge-loop interactions, which underlines the potential of BINARI crosslinkers to probe RNA regulatory networks.  相似文献   

16.
Cross‐coupling is of great importance in organic synthesis. Here it is demonstrated that cross‐coupling of aryl‐bromide and porphyrin‐bromide takes place on a Au(111) surface in vacuo. The products are oligomers consisting of porphyrin moieties linked by p‐phenylene at porphyrin’s meso‐positions. The ratio of the cross‐coupled versus homocoupled bonds can be regulated by the reactant concentrations. Kinetic Monte Carlo simulations were applied to determine the activation barrier. It is expected that this reaction can be employed in other aryl‐bromide precursors for designing alternating co‐polymers incorporating porphyrin and other functional moieties.  相似文献   

17.
18.
Highly fused, fully conjugated aromatic compounds are interesting candidates for organic electronics. With higher crystallinity their electronic properties improve. It is shown here that the crystallization of three archetypes of such molecules—pentacenetetrone, indigo, and perinone—can be achieved hydrothermally. Given their molecular structure, this is a truly startling finding. In addition, it is demonstrated that perinone can also be synthesized in solely high‐temperature water from the starting compounds naphthalene bisanhydride and o‐phenylene diamine without the need for co‐solvents or catalysts. The transformation can be drastically accelerated by the application of microwave irradiation. This is the first report on the hydrothermal generation of two fused heterocycles.  相似文献   

19.
[n]Cycloparaphenylenes ([n]CPPs) with n=5, 8, 10 and 12 and their noncovalent ring-in-ring and [m]fullerene-in-ring complexes with m=60, 70 and 84 have been studied by direct and matrix-assisted laser desorption ionization ((MA)LDI) and density-functional theory (DFT). LDI is introduced as a straightforward approach for the sensitive analysis of CPPs, free from unwanted decomposition and without the need of a matrix. The ring-in-ring system of [[10]CPP⊃[5]CPP]+. was studied in positive-ion MALDI. Fragmentation and DFT indicate that the positive charge is exclusively located on the inner ring, while in [[10]CPP⊃C60]+. it is located solely on the outer nanohoop. Positive-ion MALDI is introduced as a new sensitive method for analysis of CPP⊃fullerene complexes, enabling the detection of novel complexes [[12]CPP⊃C60, 70 and 84]+. and [[10]CPP⊃C84]+.. Selective binding can be observed when mixing one fullerene with two CPPs or vice versa, reflecting ideal size requirements for efficient complex formation. Geometries, binding and fragmentation energies of CPP⊃fullerene complexes from DFT calculations explain the observed fragmentation behavior.  相似文献   

20.
Siderophores, such as enterobactin (Ent), are small molecules that can be selectively imported into bacteria along with iron by cognate transporters. Siderophore conjugates are thus a promising strategy for delivering functional reagents into bacteria. In this work, we present an easy‐to‐perform, one‐pot chemoenzymatic synthesis of functionalized monoglucosylated enterobactin (MGE). When functionalized MGE is conjugated to a rhodamine fluorophore, which affords RhB‐Glc‐Ent, it can selectively label Gram‐negative bacteria that utilize Ent, including some E. coli strains and P. aeruginosa. V. cholerae, a bacterium that utilizes linearized Ent, can also be weakly targeted. Moreover, the targeting is effective under iron‐limiting but not iron‐rich conditions. Our results suggest that the RhB‐Glc‐Ent probe is sensitive not only to the bacterial strain but also to the iron condition in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号