首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkylammonium Hexachlorometallates. I. Crystallization Properties and Crystal Structure of Diethylenetriammonium Hexachlororhodate, [H3N(CH2)2NH2(CH2)2NH3][RhCl6] The reaction of RhCl3 · 3H2O with diethylenetriamine in 12 m hydrochloric acid yielded diethylenetriammonium hexachlororhodate [H3N(CH2)2NH2(CH2)2NH3][RhCl6] ( 1 ). Dark red single crystals of the compound were grown under hydrothermal conditions at a temperature interval of 180°C to 125°C in closed glass ampoules over several weeks (space group C2/c, a = 30.956(4) Å, b = 7.371(2) Å, c = 12.9736(15) Å, β = 113.787(11)°, Z = 8, 2385 reflections with I > 0, wR2(obs.) = 0.0279, R1(I > 2σ(I)) = 0.0271). The crystal structure is determined by a complex framework of hydrogen bonds between the hexachlororhodate anions and the diethylenetriammonium cations.  相似文献   

2.
Two novel borophosphates, MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn), exhibiting open frameworks, have been synthesized by hydrothermal reactions (T = 165 °C). The crystal structures of the isotypic compounds have been determined both at 293 K (orthorhombic, Ima2 (no. 46), Z = 4; MII = Co: a = 12.4635(4) Å, b = 9.4021(4) Å, c = 11.4513(5) Å, V = 1341.90 Å3, R1 = 0.0202, wR2 = 0.0452, 2225 observed reflections with I > 2σ(I); MII = Zn: a = 12.4110(9) Å, b = 9.4550(5) Å, c = 11.4592(4) Å, V = 1344.69 Å3, R1 = 0.0621, wR2 = 0.0926, 1497 observed reflections with I > 2σ(I)). Distorted CoO6‐octahedra and ZnO5‐square‐pyramids, respectively, share common oxygen‐corners with BO4‐, PO4‐ and (HO)PO3‐tetrahedra. The tetrahedral groups are linked via common corners to form infinite loop‐branched borophosphate chains [B2P3O12(OH)4–]. The open framework of MII‐coordination polyhedra and tetrahedral borophosphate chains contains a three‐dimensional system of interconnected structural channels running along [100], [011] and [011], respectively, which are occupied by di‐protonated piperazinium ions.  相似文献   

3.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

4.
Abstract

The reaction of trans-RuCl2(dppe)2 (1), with AgBF4 in tetrahydrofuran leads to abstraction of one of the halide ligands to produce the trigonal-bipyrimidal complex, [RuCl(dppe)2]BF4 (2). Both products are characterized by 31P NMR spectroscopy and their crystal structures determined. For the coordinatively unsaturated trigonal-bipyramidal complex (2), we found no evidence for the presence of more than one species or fluxional behaviour at room temperature in the 31P NMR spectrum. This complex was found to possess a trigonal-bipyramidal geometry in the solid state. Crystals of 1 are monoclinic, space group P21/c with a = 23.713(4)Å, b=11.156(1)Å, c = 17.595(2)Å, β=103.23(1) and v=4531(1)Å3. Convergence to conventional R values of R=0.043 and Rw = 0.042 was obtained for 416 variable parameters and 2746 reflections with I>3σ(I). Compound 2 in triclinic, P1, a=12.482(3)Å, b=12.543(3)Å, c=17.582(3)Å, α = 87.52(2)°, β= 72.70(2)° γ = 74.35(2)° and V= 2529(1)Å3. Values of R = 0.072 and Rw = 0.097 were obtained for 487 variable parameters and 3242 reflections with I>3σ(I)  相似文献   

5.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

6.
Single-Crystal Growth and Structure Refinement of RbAu and CsAu Single-crystals of RbAu and CsAu were obtained by the reaction of the alkalimetal azides with gold-powder at 400°C. The structures were determined from X-ray single-crystal diffraktometer data: space group Pm3m, Z = 1; RbAu, a = 4.098(1) Å, R/Rw(w = 1) = 0.011/0.011, N(Fo2) ≥ 3σ(Fo2) = 41 and N(var.) = 4; CsAu, a = 4.258(1) Å, R/Rw(w = 1) = 0.009/0.010, N(Fo2) ≥ 3σ(Fo2) = 34 and N(var.) = 4. Both compounds crystallize in the completely ordered CsCl-type with neglible deviations from the ideal 1:1-composition.  相似文献   

7.
Crystal structures of a series of manganese(I) complexes containing tripodal ligands were determined. For [η3-{CH3C(CH2PPh2)2(CH2SPh)-P,P′,S}Mn(CO)3]PF6 ( 1 ): a = 10.856(3) Å, b = 19.698(3) Å, c = 17.596(5) Å, β = 96.17(2)°, monoclinic, Z = 4, P21/c, R(Fo) = 0.068, Rw(Fo) = 0.055 for 3617 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)(CH2SPh)2-P,P′,S}Mn(CO)3]PF6 ( 2 ): a = 9.890(2) Å, b = 20.403(4) Å, c = 10.269(3) Å, β = 117.44(2)°, monoclinic, Z = 2, P2l, R(Fo) = 0.050, Rw(Fo) = 0.037 for 1760 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)2(CH2S)-P,P′,S}Mn(CO)3] ( 4 ): a = 8.191(7) Å, b = 10.495(3) Å, c = 19.858(6) Å, α = 99.61(2)°, β = 96.17(2)°, γ = 92.70(4)°, triclinic, Z = 2, P-I, R(Fo) = 0.048, Rw(Fo) = 0.039 for 2973 reflections with Io > 2σ(Io). There is no significant difference in the bond lengths of Mn-S bonds among three species in their crystal structures [2.325(2) Å in 1; 2.358(4) in 2; 2.380(2) in 4], but the better donating ability of thiolate in complex 4 appears on the lower frequencies of its carbonyl stretching absorptions.  相似文献   

8.
Abstract

Two inclusion compounds of the 11-[bis(p‐chlorophenyl)hydroxymethyl]-9,10-dihydro-9,10-ethanoanthracene host (1) have been studied by X-ray diffraction in order to find an explanation of the exceptional clathrate formation ability of the present chloro-containing host as compared with that of closely related chlorine-free host analogues. Crystal data: 1·ethyl acetate (2:1), C27H22OCl2·½(C4H8O2), Mw = 501.45, P21/c, a = 8.9060(5), b = 11.1109(6), c = 25.642(1) Å, β = 99.03(1)°, Z = 4, R = 0.047 for 2029 F values with I>2σ(I); 1·cyclohexylamine (1:2), 2[C29H22OCI2·2(C6H13N)], Mw = 1311.50, Pc, a = 12.144(2), b = 12.689(3), c =23.119(8) Å, β = 91.68(1)°, Z = 2, R = 0.054 for 3073 F values with I>2σ(I). Although the two solid inclusion compounds differ in host‐guest stoichiometry, space group symmetry and also in host‐guest recognition mode, both co-crystals are held together by numerous C?H…X (X = O, N or Cl) interactions, in which the chloro-substituents of 1 play a very active role. The observed frequent participation of chlorine in intermolecular interactions in these compounds suggests an ability of the (C?)Cl substituents to effectively enhance the crystal formation in the absence of more dominant forces.  相似文献   

9.
The solid and solution structures of a new optically active aminopyridine compound, 2‐[(1S)‐(+)‐10‐camphorsulfonamino]‐6‐aminopyridine [(S)‐csaap], 1 , are reported. Crystal data: space group P21, a = 8.9729 (5), b = 10.9447 (6), c = 36.693 (2) Å, β = 96.435 (1)°, V = 3580.8 (3) Å3, Z = 8, R1 = 0.0673 and wR2 = 0.1600 with I > 2σ(I). This chiral compound shows an unprecedented cocrystallization of four stereoisomers, which are characterized by X‐ray crystallography and NMR spectroscopy.  相似文献   

10.
Lanthanide nitrate complexes of diphosphazane dioxides Ph2P(O)N(Pri)P(O)Ph2 ( 1 ) and (PhO)2P(O)N(Me)P(O)(OPh)2 ( 2 ) have been synthesised and studied by conductometry, IR, multinuclear NMR spectroscopic methods and X-ray diffraction. Ligand 2 is accessible by two different methods, viz., by direct oxidation of the phosp(III)azane ligand or by starting from phosph(V)azane chloro precursor. The structure of 2 is confirmed by X-ray diffraction. Crystallographic data for 2 : Triclinic, Space group P1 , a = 10.078(1), b = 10.575(3), c = 12.364(4) Å, α = 75.70(2)°, α = 75.56(1)°, γ = 77.68(1)°, Z = 2, V = 1 220 Å3; structure refined to RF = 0.0459 on 3 495 data with F > 3σ(F). The diphosphazane dioxide ligand exhibits trans geometry in the solid state. The structure of a lanthanide complex, [Pr(NO3)3( 2 )2] ( 14 ) is also determined by X-ray diffraction. Crystallographic data for 14 : Trigonal, Space group P32, a = b = 15.710(2), c = 40.067(2) Å, Z = 6, V = 8 564 Å3; structure refined to RF = 0.0430 on 8 077 data with F > 5σ(F). The two diphosphazane dioxide ligands and the nitrate groups are coordinated to praseodymium in a bidentate chelate fashion. The geometry around the ten coordinated metal is distorted bicapped square antiprism.  相似文献   

11.
Abstract

The X-ray crystal structures of two closely related Ag(I) complexes of 15-crown-5 and benzo-15-crown-5 are reported. In the case of [Ag(15-crown-5)2][SbF6] 1, pointing one of its oxygen atoms away from the Ag+ cation enables one of the crown ligands to take part in an intermolecular C?H…O hydrogen bond. The analogous benzo-15-crown-5 species, [Ag(benzo-15-crown-5)2][SbF6] 2, is too rigid to attain the necessary conformation. Crystal data for 1: P21/c, a = 8.4481(3), b = 25.5813(9), c = 13.2773(4) Å, β = 101.354(2)°. Z = 4, unique data: 5187 R 1 [F 2 > 2σ(F 2)] 0.0259. Compound 2: P1, a = 8.6511 (15) Å, b =10.2322(18) Å, c = 19.291(3) Å, α = 103.704 (2)°, β = 101.274(2)°, γ = 95.952(2)°, Z = 2, unique data: 5803 R 1 [F 2>2σ(F 2)] 0.0931.  相似文献   

12.
The hydrothermal synthesis and the structure determination from powder or single crystals X-ray diffraction of 3 new metallophosphonates are presented. Crystal data: Ga(OH)0.28F0.72PO3(CH3): P21/c (n∘ 14), a = 7.7912(7) Å, b = 7.2310(6) Å, c = 9.3114(8) Å, β = 106.873(2) °, V = 502.00(8) Å 3, Z = 4, R1(F) = 0.0409, wR2(F2) = 0.0933 for 1 266 reflections I > 2 σ (I) with 77 parameters. Ga3(OH)3F3(MePO3)2 H2N(CH2)3NH3: P-3 (No. 147), a = b = 7.2514(2) Å, c = 7.9413(2) Å, V = 361.6(3) Å3, Z = 6, RF = 7.95, RBragg = 7.18, Rwp = 17.3, Rp = 12.0. (VIVO(H2O))(CuII(H2O))O3P-CH2-PO3: P212121 (No. 19), a = 6.3884(3) Å, b = 10.7284(4) Å, c = 11.2762(5) Å, V = 772.84(6) Å3, Z = 4, R1(F) = 0.0395, wR2(F2) = 0.0861 for 2 012 reflections I > 2 σ (I) and 128 parameters.  相似文献   

13.
The crystal structure of [C10N2H10]2[P2Mo5O21(OH)2] · 2H2O, contains the heteropolyanion, [P2Mo5O21(OH)2]4—, together with diprotonated 4, 4′‐bipyridine. The heteropolyanion is built up from five MoO6 octahedra sharing four common edges and one common corner, capped by two PO3(OH) tetrahedra. The structure is stabilized by hydrogen bonds involving the hydrogen atoms of the 4, 4′‐bipyridine, water molecules and the oxygen atoms of the pentamolybdatobisphosphate. This is the first example that this kind of cluster could be isolated in the presence of a poly‐functional aromatic molecule ion. Crystal data: triclinic, P1¯ (No. 2), a = 9.983(2)Å, b = 11.269(2)Å, c = 17.604(4)Å, α = 73.50(3)°, β = 84.07(3)°, γ = 67.96(3)°; V = 1760.0(6)Å3; Z = 2; R1 = 0.037 and wR2 = 0.081, for 9138 reflections [I > 2σ(I)].  相似文献   

14.
Dodecanuclcar cluster complexes [Mo12S16(PEt3)10] 1 and [Mo12Se16(PEt3)10] 2 have been prepared by the reactions of [Mo6S8(PEt3)6] with sulfur or [Mo6Se8(PEt3)6] with Cp2TiSe5, respectively, in toluene at refluxing temperature. The structures have been determined at 173 K by X-ray crystallography. The compound 1 ·3CHCl3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 14.859(5) Å, b = 15.868(4) Å, c = 14.200(7) Å, α = 100.58(3)°, β = 117.58(3)°, γ = 79.53(2)°, V = 2899(1) Å3, and Z = 1. Full-matrix least-squares refinement using 9016 observed reflections (Io > 2σ(Io)) gave R = 0.056, and Rw = 0.045. The data for 2 ·2CHCl3 are: triclinic, $ {\rm P}\bar 1 $, a = 15.737(4) Å, b = 18.763(9) Å, c = 13.062(4) Å, α = 102.45(3)°, β = 128.54(2)°, γ = 69.49(3)°, V = 2825 Å3, Z = 1, R = 0.096, and Rw = 0.120 for 5922 reflections (Io > 2σ(Io)). The cluster complexes 1 and 2 have two octahedral molybdenum cluster units linked by the rhomboidal intercluster Mo24-E)2 bonding. The intercluster Mo—Mo distances in 1 are 3.419 Å and 2 3.551 Å. The cyclic voltammetry of 1 and 2 shows two oxidation and two reduction steps separated as large as 380–490 mV. The UV-Vis spectra of the dodecanuclear cluster complexes 1 and 2 have an extra weak band at around 744 nm which is absent in the starting octahedral cluster complexes.  相似文献   

15.
The reaction of PhN3(H)C6H4N3(H)Ph with Hg(NO3)2 in THF in the presence of triethylamine yields {Hg[PhN3C6H4N3(H)Ph](NO3)} as a yellow powder that can be recrystallized from THF/acetone. The crystals belong to the monoclinic system, space group P21 with the cell dimensions a = 9.639(2), b = 5.412(1), c = 19.675(4) Å, β= 97.47(3)°, V = 1017.7 (4) Å3, Z = 2. The crystal structure determination (2668 unique reflections with [I>2σ(I)], 262 parameters, R1 = 0.0393) shows that the structure consists of mononuclear complexes. Hg atoms are linearly coordinated by one Nα atom of the triazenide unit of the planar ligand [Hg‐N(1) = 2.101(8) Å] and an O atom of the NO3 ion [Hg‐O(1) = 2.11(1) Å]. Additional weak Hg‐N contacts [Hg‐N(4) = 2.662(9) and Hg‐N(3) = 2.851(9) Å] and an intramolecular hydrogen bond between the triazenide hydrogen and an O atom of the nitrate group are observed [N(6)‐H(6)···O(2) = 2.92(2) Å]. The complexes are stacked to infinite chains by metal‐arene π‐interactions. Each Hg atom is coordinated by the terminal phenyl rings of two neighboring complexes [Hg‐C from 3.40(1) to 4.10(1) Å] in a η2 fashion.  相似文献   

16.
Hexaminecyclotriphosphazenehemiammoniate, P3N3(NH2)6 · 0.5 NH3, a Product of High Pressure Ammonolysis of White Phosphorus White phosphorus gives at NH3-pressures ≥5 kbar and temperatures above 250°C in a disproportionation reaction P3N3(NH2)6 · 0.5 NH3; besides these products red phosphorus is formed. The yield on P3N3(NH2)6 · 0.5 NH3 increases with T and is about 70–80% at 400°C as to the disproportionation reaction of the amount of white phosphorus. X-ray structure determination was successful on single crystals of P3N3(NH2)6 · 0.5 NH3. Pbca, N = 8 a = 11.395(3) Å, b = 12.935(4) Å, c = 12.834(4) Å R = 0.035, Rw = 0.041 with w = 1, N (Fo2) ≥ 3σ(Fo2) = 1371, N(Var.) = 166. The molecules are connected by N? H? N-bridgebonds with 3.04 Å ≤ d(N …? N) ≤ 3,19 Å and d (N? H) = 0.87 Å. The compound is furthermore characterized by IR-data and its thermical behaviour.  相似文献   

17.
18.
The reaction of CuBr2, N(CH2CH2COOH)3, and Nd(NO3)3·6H2O in water adjusted pH = 5‐6 with H2SO4 at constant 55 °C afforded a novel three‐dimensional coordination complex [Cu12(SO4)12(3H2O)]·H2O, ( 1 ), which was characterized by IR, elemental analysis, and X‐ray diffraction. The crystal structure data of 1 as follows: Cubic, , a = b = c = 24.018(2) Å, V = 13855 (3) Å3, Z = 968, Dc = 1.905 g/cm3, F(000) = 7712, R1 = 0.0352, wR2 = 0.0866 (I > 2σ(I)), R1 = 0.0449, wR2 = 0.0927 (for all data) and S = 1.075. The analysis of crystal structure indicates that the structure of 1 is similar to that of silicate zeolite (Na12[Al12Si12O48]·27H2O).  相似文献   

19.
Substituted 2-aminoindenes have been synthesized in almost quantitative yields by reactions of amines such as methylpiperazine, trimethylethylenediamine, 1,4-diaza-cycloheptane and N,N′-dimethylethylenediamine with 2-indanone. The 2-aminoindenes can be deprotonated and reacted with BrMn(CO)3(Py)2 to produce the respective aminoindenyl-cymantrenes in yields between 55–70%. The X-ray crystal structures of 2-(methylpiperazine)indenyl-cymantrene 5 (P1 , a = 12.667(3) Å, b = 16.630(3) Å, c = 17.382(3) Å, α = 72.70(3)°, β = 74.59(3)°, γ = 88.66(3)°, V = 3364.1(12) Å 3, Z = 8, R1(2σ(I)) = 4.02%, wR2(2σ(I)) = 10.30%) and the HClO4 adduct of 2-(trimethylethylenediamine)-indenyl-cymantrene 6 (Cc, a = 23.722(5) Å, b = 6.9080 Å, c = 13.264 Å, β = 111.77(3)°, V = 2018.6(7) Å 3, Z = 4, R1(2σ(I)) = 2.94%, wR2(2σ(I)) = 7.90%) were determined. In both complexes the indenyl-carbon bonded to nitrogen displays significantly longer bonds to manganese [223.5(3)–225.8(3) pm] than the other four carbon atoms [213.3(3)–219.1(3) pm]. The short indenyl-nitrogen bonds of 136.2(4) and 137.8(4) pm are indicative of a substantial multiple bond character. The complexation of Zn2+ by the nitrogen atoms of 6 results in significant shifts of the CO stretching frequencies.  相似文献   

20.
NaPPh2, prepared from sodium and PClPh2 in refluxing dioxane, crystallises from dioxane as [Na4(μ‐dioxane)8/2(μ‐dioxane)(PPh2)4] ( 1 ), in which the basic structural features are eight‐membered Na4P4 rings, linked by intermolecularly bridging dioxane molecules to give a three‐dimensional network, and inclusion of one dioxane molecule inside the eight‐membered ring. 1 crystallises in the orthorhombic space group Cmc21 (no. 36), T = 203(2) K, a = 27.377(1) Å, b = 10.579(1) Å, c = 23.608(1) Å, V = 6837.3(6) Å3, Z = 4, and the absolute structure parameter 0.3(2). The refinement converged to R1 = 0.0632, wR2 = 0.1701 (for reflections with I > 2σ(I)), R1 = 0.0707, wR2 = 0.1781 (all data).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号