首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC(11)H(22)S)(2) (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na(+)) was used as a ligand for gold nanoparticles. These monolayer-protected gold colloids (MPCs) were transformed into the catalytically active H(+)-form by ion exchange. This colloid-bound catalyst hydrolyzed the TMS adsorbate (TMS-OC(11)H(22)S)(2) both in solution and when self-assembled on gold surfaces. Microcontact printing of the active colloid-bound catalyst on the preformed TMS SAM led to the deposition of the colloid onto the SAMs. After the catalyst nanoparticles were rinsed off, a patterned surface was created as shown by AFM.  相似文献   

2.
Polymer-microsphere-stabilized gold metallic colloids have been prepared by a novel strategy of simple and convenient reduction of the metallic salt through the stabilization of the active carboxylic acid group on the gel and surface layer of the microsphere. The nature of the interaction between the carboxylic acid and Au nanoparticles was studied in detail by XPS. Preliminary results indicate that polymer-microsphere-stabilized gold colloids are active catalysts for the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride as reductant. The catalytic properties of the stabilized catalyst for recycling were also investigated.  相似文献   

3.
Gold catalysis   总被引:1,自引:0,他引:1  
Catalysis by gold has rapidly become a hot topic in chemistry, with a new discovery being made almost every week. Gold is equally effective as a heterogeneous or a homogeneous catalyst and in this Review we attempt to marry these two facets to demonstrate this new found and general efficacy of gold. The latest discoveries are placed within a historical context, but the main thrust is to highlight the new catalytic possibilities that gold-catalyzed reactions currently offer the synthetic chemist, in particular in redox reactions and nucleophilic additions to pi systems. Indeed gold has proved to be an effective catalyst for many reactions for which a catalyst had not been previously identified, and many new discoveries are still expected.  相似文献   

4.
 Several stable palladium, platinum, silver, and gold colloids were prepared by reducing the corresponding metal precursors in the presence of protective amphiphilic block copolymers. Some palladium and platinum precursors with different hydrophobicities, namely palladium chloride PdCl2, palladium acetate Pd (CH3COO)2, hexachloroplatinic acid H2PtCl6, and platinum acetylacetonate Pt (CH3COCH=C(O–)CH3)2, have been used in order to investigate differences in their catalytic activity. The polymers investigated for their ability to stabilize such transition metal colloids were polystyrene-b-poly(ethylene oxide) and polystyrene-b-poly(methacrylic acid). The metal particle sizes and morphologies were determined by transmission electron microscopy and found to be in the M28.8nnanometer range. The catalytic activity of the palladium and platinum colloids was tested by the hydrogenation of cyclohexene as a model reaction. The protected palladium and platinum nanoparticles were found to be catalytically active, and final conversions up to 100% cyclohexane could be obtained. Depending on the choice of polymer block types and lengths, the precursor type, and the reduction method, different nanoparticle morphologies and catalytic activities could be obtained. These novel catalytically active metal–polymer systems are thus promising candidates for the development of tailored catalyst systems. Received: 10 June 1996 Accepted: 30 October 1996  相似文献   

5.
N-heterocyclic carbenes (NHCs) have become attractive ligands for functionalizing gold nanoparticle surfaces with applications ranging from catalysis to biomedicine. Despite their great potential, NHC stabilized gold colloids (NHC@AuNPs) are still scarcely explored and further efforts should be conducted to improve their design and functionalization. Here, the ‘bottom-up’ synthesis of two water-soluble gold nanoparticles ( AuNP-1 and AuNP-2 ) stabilized by hydrophilic mono- and bidentate NHC ligands is reported together with their characterization by various spectroscopic and analytical methods. The NPs showed key differences likely to be due to the selected NHC ligand systems. Transmission electron microscopy (TEM) images showed small quasi-spherical and faceted NHC@AuNPs of similar particle size (ca. 2.3–2.6 nm) and narrow particle size distribution, but the colloids featured different ratios of Au(I)/Au(0) by X-ray photoelectron spectroscopy (XPS). Furthermore, the NHC@AuNPs were supported on titania and fully characterized. The new NPs were studied for their catalytic activity towards the reduction of nitrophenol substrates, the reduction of resazurin and for their photothermal efficiency. Initial results on their application in photothermal therapy (PTT) were obtained in human cancer cells in vitro. The aforementioned reactions represent important model reactions towards wastewater remediation, bioorthogonal transformations and cancer treatment.  相似文献   

6.
黄金矿的催化浸取   总被引:2,自引:0,他引:2  
基于对金自溶解电化学过程的分析,提出此过程受阴极还原反应所控制,加入阴极反应催化剂,能加快金自溶速度,实验结果充分表明,我们找到的催化剂A能提高金的浸出速度和浸出效率。  相似文献   

7.
In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple C? C bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and Brønsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 °C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31P NMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon–carbon bonds.  相似文献   

8.
吴超  郭红燕  胡家文 《化学学报》2009,67(14):1621-1625
研究了α-甲氧基-ω-巯基聚乙二醇(mPEG-SH, 5000 MW)修饰的金溶胶的稳定性, 初步探讨了其稳定机制. 将线性mPEG-SH通过巯基化学吸附于金溶胶表面, 可形成高分子层包被的金溶胶. 研究结果表明, PEG修饰的金溶胶可以在pH=1~13.5或盐浓度高达1.20 mol/L的较苛性条件下保持稳定. 这是由于金溶胶表面吸附的高分子保护层为溶胶提供了新的空间稳定, 取代了溶胶原来的DLVO稳定(实质是电荷稳定). 因而, PEG保护的金溶胶在很大程度上克服了DLVO稳定的溶胶对环境敏感、易聚沉的缺点, 能在复杂的条件(如生理条件)下应用. 鉴于PEG的水溶性、无毒性和生物亲和性, 这种具有较高稳定能力的金纳米粒子/PEG复合体结合了金纳米粒子和PEG的优异性能, 可作为生物纳米探针用于复杂条件下的生物分析.  相似文献   

9.
The addition of iron to high-area TiO2 (Degussa P25, a mixture of anatase and rutile) increases the number of oxygen defect sites that react with O2 to form peroxide and superoxide species. In the presence of gold nanoclusters on the TiO2 surface, the superoxide species become highly reactive, and the activity of the supported gold catalyst for CO oxidation is approximately twice that of the most active comparable catalysts described in the literature. Images of the catalyst obtained by scanning transmission electron microscopy combined with spectra of the catalyst measured in the working state (Raman, extended X-ray absorption fine structure, and X-ray absorption near-edge structure) indicate strong interactions of gold with the support and the presence of iron near the interfaces between the gold clusters and the TiO2 support. The high activity of the catalysts is attributed to the presence of defects in these sites that activate oxygen.  相似文献   

10.
Stereoselective thioallylation of alkynes under possible gold redox catalysis was accomplished with high efficiency (as low as 0.1 % catalyst loading, up to 99 % yield) and broad substrate scope (various alkynes, inter‐ and intramolecular fashion). The gold(I) catalyst acts as both a π‐acid for alkyne activation and a redox catalyst for AuI/III coupling, whereas the sulfonium cation generated in situ functions as a mild oxidant. This novel methodology provides an exciting system for gold redox catalysis without the need for a strong oxidant.  相似文献   

11.
贾丽凤  何涛  李志鹏  李雪梅 《催化学报》2010,31(11):1307-1315
 贵金属纳米粒子由于其小尺寸效应而表现出特殊的催化性能. 综述了纳米 Au 粒子表面配位催化剂的制备方法及其在催化中的应用. 由于 Au 可与硫化物形成配位键, 所以硫化物可在 Au 表面形成有序单分子膜. 单分子膜保护的 Au 纳米粒子具有非常好的溶解性、分散性、稳定性, 以及由不同的表面功能团而导致的不同的催化性能. 该催化体系兼具均相催化剂和多相催化剂的特点, 这对开发新型催化剂具有重要的理论和实际意义.  相似文献   

12.
The combined use of gold as transition metal catalyst and N‐heterocyclic carbene (NHC) as organic catalyst in the same solution for relay catalytic reactions was disclosed. The ynamide substrate was activated by gold catalyst to form unsaturated ketimine intermediate that subsequently reacted with the enals (via azolium enolate intermediate generated with NHC) effectively to form bicyclic lactam products with excellent diastereo‐ and enantio‐selectivities. The gold and NHC coordination and dissociation can be dynamic and tunable events, and thus allow the co‐existence of both active metal and carbene organic catalysts in appreciable concentrations, for the dual catalytic reaction to proceed.  相似文献   

13.
The development of new sustainable chemical processes requires the implementation of ultra‐selective reaction processes. The enormous selectivity found for gold‐based catalysts when applied in several reactions has opened new frontiers. For instance, the selective activation of alkynes is a common feature for both homogeneous and heterogeneous gold catalysts. Herein, we employ experimental and theoretical methods to assess the similarities and differences in the performance of homogeneous and heterogeneous gold catalysts. Alkynophilicity, the selective activation of alkynes, is found to have a thermodynamic origin in the heterogeneous case and a kinetic one for homogeneous catalysis. Complex enyne rearrangements require the more active homogeneous (single gold) catalyst because it has more electrophilic character than its heterogeneous (nanoparticle) counterpart.  相似文献   

14.
Multicomponent reactions are attractive for assembling functionalized heterocyclic compounds. To this end, an efficient gold‐catalyzed three‐component domino reaction to form oxazoles directly from imines, alkynes, and acid chlorides is presented. The reaction proceeds in a single synthetic step by using a gold(III)–N,N′‐ethylenebis(salicylimine) (salen) catalyst to give trisubstituted oxazoles in up to 96 % yield. The substrate scope, a mechanistic study exploring the role of the gold catalyst, and the synthetic applications of the oxazole products are discussed.  相似文献   

15.
Palladium colloids revealing narrow particle size distributions can be obtained by chemical reduction using tetra–alkylammonium hydrotriorganoborates. Combining the stabilizing agent [NR] with the reducing agent [BEt3H?] provides a high concentration of the protecting group at the reduction centre. Alternatively, NR4X (X = halogen) may be coupled to the metal salt prior to the reduction step: addition of N(octyl)4Br to Pd(ac)2 in THF, for example, evokes an active interaction between the stabilizing agent and the metal salt. Reduction of NR-stabilized palladium salts with simple reducing agents such as hydrogen at room temperature yields stable palladium organosols which may be isolated in the form of redispersible powders. The anion of the palladium salt is crucial for the success of the colloid synthesis. Electron microscopy shows that the mean particle size ranges between 1.8 and 4.0 nm. An X–ray–photoelectron spectrscopic examination demonstrated the presence of zerovalent palladium. These palladium colloids may serve as both homogeneous and heterogeneous hydrogenation catalysts. Adsorption of the colloids onto industrially important supports can be achieved without agglomeration of palladium particles. The standard activity of a charcoal catalyst containing 5% of colloidal palladium determined through the cinnamic acid standard test was found to exceed considerably the activity of the conventional technical catalysts. In addition, the lifespan of the catalyst containing a palladium colloid, isolated from the reduction of [N(octyl)4]2PdCl2Br2 with hydrogen, is superior to conventionally prepared palladium/charcoal (Pd/C) catalysts. For example, the activity of a conventional Pd/C catalyst is completely suppressed after 38×103 catalytic cycles per Pd atom, whereas the colloidal Pd/C catalyst shows activity even after 96times;103 catalytic cycles.  相似文献   

16.
We investigated the potential of the Cu(I) catalyzed azide-alkyne cycloaddition between water soluble azide and alkyne functionalized gold nanoparticles in terms of dimer formation via a solid phase support. Alkyne and azide lipoic acid derivatives are prepared and utilized as stabilizing ligands for 15?nm gold colloids. For the solid phase supported click reaction first citrate stabilized gold nanoparticles are immobilized on amine terminated silicon wafers. In the following step the citrate ligands of the upper free accessible nanoparticle surface are exchanged against a mixture of the alkyne derivative of lipoic acid and lipoic acid. Upon addition of lipoic acid/lipoic acid azide derivative stabilized 15?nm gold nanoparticles and the Cu(I) catalyst solution covalent interparticle coupling between immobilized and gold nanoparticles added is achieved. The formed structures are analyzed by scanning electron microscopy directly on the solid support. It is demonstrated that the yield of dimeric structures on the solid phase support increases with increased molar ratio of the catalyst, thus indicating that dimers are indeed formed by covalent bond formation. Upon treatment with ultrasound the formed structures could be released and detected with transmission electron microscopy measurements.  相似文献   

17.
Dinuclear gold complexes have the ability to interact with one or more substrates in a dual‐activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold‐based catalytic system by site‐isolation of mononuclear gold complexes by selective encapsulation. The typical dual‐activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.  相似文献   

18.
Photochemical formation of colloidal silver, colloidal gold and silver-gold (Ag-Au) composite colloids under mild conditions has been studied. Irradiation of either aqueous AgCIO4 or HAuCI4 solution in the presence of sodium alginate (SA) with 253.7 nm light yielded colloidal silver or gold, whose particle diamter was 10-30 nm or 40-60 nm, respectively. The Ag-Au composite colloids consisting of mixtures of silver and gold domains (particle diameter 30-150 nm) have been prepared and their extinction spectra have been examined on the basis of a conventional Mie theory in combination with an effective medium theory to estimate the optical constants of these colloids. It has been shown that the extinction spectra of the Ag-Au composite colloids are completely different from those of Ag-Au alloy colloids, in that the former have two extinction maxima close to the colloidal extinction bands of pure silver and gold, in contrast to a single extinction maximum of the latter. The importance of natural, high-molecular carboxylic acids such as alginic acid in the photochemical formation of metal colloids and thin films has been stressed.  相似文献   

19.
The catalytic hydrosilylation of aldehydes in the presence of PBu3 modified Au(I)-complexes was investigated. In situ IR and NMR experiments have revealed that both, the ligand PBu3 and the substrate aldehyde play an important role in stabilizing the gold catalyst and/or forming the catalytically active species. In their absence the reducing power of silane destabilizes the gold (I) catalyst giving rise to gold clusters or particles. Several side reactions involving water and oxygen were also investigated. A plausible reaction pathway as an alternative to the well-accepted mechanism for the transition-metal homogeneously catalyzed hydrosilylation of aldehydes has been proposed to accommodate the experimental observations.  相似文献   

20.
A new selective gold(I)‐catalyzed intramolecular heterocyclization of propargylic thioureas has been developed, efficiently affording two kinds of cycloadducts in moderate to excellent yields with a broad substrate scope. Further mechanistic investigations indicate that competitive different gold activation modes feature in these cyclization processes. Kinetic experiments reveal that the gold activation mode is influenced by the ligand of the gold catalyst and the reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号