首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Synthesis, Crystal Structures, and Vibrational Spectra of [(Ph3P)2N]2[(W6Cl )I ] · 2 Et2O · 2 CH2Cl2 and [(Ph3P)2N]2[(W6Cl )(NCS) ] · 2 CH2Cl2 By treatment of [(W6Cl)I]2– with (SCN)2 in dichloromethane at –20 °C the hexaisothiocyanato cluster anion [(W6Cl)(NCS)]2– is formed. X‐ray structure determinations have been performed on single crystals of [(Ph3P)2N]2[(W6Cl)I] · 2 CH2Cl2 · 2 Et2O ( 1 ) (triclinic, space group P1, a = 10.324(5), b = 14.908(3), c = 17.734(8) Å, α = 112.78(2)°, β = 99.13(3)°, γ = 92.02(3)°, Z = 1) and [(Ph3P)2N]2[(W6Cl)(NCS)] · 2 CH2Cl2 ( 2 ) (triclinic, space group P1, a = 11.115(2), b = 14.839(2), c = 17.036(3) Å, α = 104.46(1)°, β = 105.75(2)°, γ = 110.59(1)°, Z = 1). The thiocyanate ligands of 2 are bound exclusively via N atoms with W–N bond lengths of 2.091–2.107 Å, W–N–C angles of 173.1–176.9° and N–C–S angles of 178.1–179.3°. The vibrational spectra exhibit characteristic innerligand vibrations at 2067–2045 (νCN), 879–867 (νCS) and 490–482 (δNCS). Based on the molekular parameters of the X‐ray determination of 1 the vibrational spectra of the corresponding (n‐Bu4N) salt of 1 are assigned by normal coordinate analysis. The valence force constants are fd(WW) = 1.61, fd(WI) = 1.23 and fd(WCl) = 1.10 mdyn/Å.  相似文献   

2.
Synthesis, Crystal Structure, and Vibrational Spectra of (n-Bu4N)2[(Mo6I)(NCS)] By treatment of [(Mo6I)I]2– with (SCN)2 in dichloromethane at –20 °C the hexaisothiocyanato cluster anion [(Mo6I)(NCS)]2– is formed. The X-ray structure determination of (n-Bu4N)2[(Mo6I)(NCS)] · 2 Me2CO (monoclinic, space group P21/c, a = 13.168(5), b = 11.964(5), c = 24.636(5) Å, β = 104.960(5)°, Z = 2) shows, that the thiocyanate groups are coordinated exclusively via N atoms with Mo–N bond lengths of 2.141–2.150 Å, Mo–N–C angles of 166–178° and N–C–S-angles of 174–180°. The vibrational spectra exhibit characteristic innerligand vibrations at 2073–2054 (νCN), 846–844 (νCS) and 480–462 cm–1NCS).  相似文献   

3.
19F NMR Spectroscopic Evidence and Calculation of the Statistical Formation of Mixed Cluster Anions [(Mo6I Cl )F ]2?, n = 0–7, and Preparation of (TBA)2[(Mo6I )F ] The octa-μ3-iodo-hexafluoro-hexamolybdate(2?)ion [(Mo6I)F]2? is prepared for the first time. The system of the 21 innersphere mixed clusters (Mo6ICl)4+, n = 0–7 is formed by exchange of innersphere bound Cli against outersphere bound Ia on tempering solid [(Mo6Cl)I] at 400°C. Prolonged tempering leads to increasing average n values of the mixture, which is converted into the tetrabutylammonium salt (TBA)2[(Mo6ICl)F]. Using increments of chemical shifts and integral peak intensities the 54 19F-nmr signals of the 21 species (compound n = 8 is absent) are assigned and confirmed by the 2 D-19F/19F-COSY spectrum. From the measured intensities the distribution of the different compounds is determined and proves significant deviation from statistical occupation, revealing the preference of isomers with iodine atoms occupying edges of the innersphere cube and discrimination of those sharing diagonals of the faces. Moreover all compounds with n = 3 and 4 are present overaverage in comparison to the others.  相似文献   

4.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of [(Mo6Br )Y ]2?; Ya ? CN, NCS By treatment of [(Mo6Br)Bra6]2? with AgNO3 in acetone and addition of KCN or KNCS the hexacyano and hexaisothiocyanato derivates [(Mo6Br)Y]2?, Ya ? CN, NCS are formed. X-ray structure determinations of (Ph4P)2 [(Mo6Br)(CN)a6]·4H2 O ( 1 ) (triclinic, spacegroup P1, a = 11.63(3), b = 11.85(1), c = 14.23(5) Å, α = 71.8(1)°, β = 67.6(3)°, γ = 62.8(1)°, Z= 1) and (n-Bu4N)2[(Mo6Br i8)(NCS)a6] · 2Et2O ( 2 ) (monoclinic, spacegroup P21/n, a = 11.483(3), b = 16.348(5), c = 20.059(6) Å, β= 95.44(3)°, Z = 2) have been performed. The via C coordinated cyano ligands of ( 1 ) reveal facial groups with (MoCN) angles of 168.0–171,5° and 174.1°–175.7°. In ( 2 ) the via N coordinated isothiocyanato groups at the apical positions show MoNC-angles of 164.4°, the equatorial angles are 172.7–173.5°. Using the molecular parameters of the X-ray determinations the 10 K IR and Raman spectra of the (n-Bu4N) cluster salts are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(MoMo) = 1.41 (CNa), 1.43 (NCSa), fd (MoBri) = 0.97 (CNa), 0.96 (NCSa), fd(MoC) = 1.62, fd(Mo-N) = 2.09 mdyne/Å.  相似文献   

5.
Synthesis, Crystal Structure and Spectroscopic Properties of the Cluster Anions [(Mo6Br )X ]2? with Xa = F, Cl, Br, I The tetrabutylammonium (TBA), tetraphenylphosphonium (TPP) and tetraphenylarsonium (TPAs) salts of the octa-μ3-bromo-hexahalogeno-octahedro-hexamolybdate(2?) anions [(Mo6Br)X]2? (Xa = F, Cl, Br, I) are synthesized from solutions of the free acids H2[(Mo6Br)X] · 8 H2O with Xa = Cl, Br, I. The crystal structures show systematic stretchings in the Mo? Mo bond length and a slight compression of the Bri8 cube in the Fa to Ia series. The cations do not change much. The i.r. and Raman spectra show at 10 K almost constant frequencies of the (Mo6Bri8) cluster vibrations, whereas all modes with Xa ligand contribution are characteristically shifted. The most important bands are assigned by polarization measurements and the force constants are derived from normal coordinate analysis. The 95Mo nmr signals are shifted to lower field with increasing electronegativity of the Xa ligands. The fluorine compound shows a sharp 19F nmr singlet at ?184.5 ppm.  相似文献   

6.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

7.
Vibrational Spectra and Normal Coordinate Analysis of 92Mo, 100Mo, 35Cl, and 37Cl Isotopomers of the Cluster Anions [(Mo6X )Y ]2?; Xi = Cl, Br; Ya = F, Cl, Br, I The tetrabutylammonium (TBA) salts of the octa-μ3-halogeno-hexahalogeno-octahedro-hexamolybdate(2 –) anions [(Mo6X)Y]2?; Xi = Cl, Br; Ya = F, Cl, Br, I; have been synthesized using 92Mo, 100Mo, 35Cl, and 37Cl. The 10 K IR and Raman spectra reveal significant frequency shifts due to the isotopic labelling of the Mo6 cage, the inner sphere halides X8i or the outer sphere ligands Y, respectively. The normal coordinate analysis yields (Mo? Mo) valence force constants of about 1.3 to 1.5 mdyn/Å. For the μ3-bonded halogenes Cli and Bri valence force constants of 1.1 resp. 1.0 mdyn/Å are calculated. The values for (Mo? Ya) bonds are found in the usual halide range. The observed isotopic shifts are verified very well by the calculations, allowing detailed assignment of the IR and Raman spectra of these compounds for the first time.  相似文献   

8.
19F NMR Spectroscopic Evidence and Calculation of the Statistical Formation of Mixed Cluster Anions [(Mo6Br Cl )F ]2?, n = 0 – 8 The complete system of the innersphere mixed clusters (Mo6BrCl)4+ is formed by exchange of innersphere bound Cli against outersphere bound Bra on tempering the solid [(Mo6Cl)Br] at 500°C for 16 h. After conversion with conc. HCl into (H3O)2[(Mo6BrCl)Cl] and precipitation of the outer Cla with AgBF4 in ethanol, treatment with tetrabutylammonium(TBA)fluoride yields (TBA)2 [(Mo6BrCl)F], a mixture of 22 different species. According to the sets of chemical equivalent fluorine atoms in total 55 19F nmr signals are expected, which are really observed in the high resolution 1D-19F-nmr spectrum. Using increments of chemical shifts, peak intensities and multiplet structures as well as the 2D-19F/19F-COSY spectrum the complete and unambiguous assignment of all resonances is achieved. From the measured integral intensities the distribution of the different compounds is determined, revealing statistical formation of the geometrical isomers.  相似文献   

9.
On Ordered Perovskites with Cationic Vacancies. XI. Compounds of Type A B B □1/4WVIO6 ? A BIIB □W O24 with AII, BII = Ba, Sr Depending on the ionic radii of the two and three valent cations in the perovskites of type ABB □1/4WVIO6 ?; ABIIB □WO24 order disorder phenomena are present. The results of the x-ray and vibrational spectroscopic investigations as well as the diffuse reflectance spectra and the visible photoluminescence are reported.  相似文献   

10.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

11.
On Ordered Perovskites with Cationic Vacancies. X. Compounds of Type A B B □1/4MVIO6 ? A BIIB □M O24 with AII, BII = Ba, Sr, Ca and MVI = U, W Perovskites of type Ba8BIIB2III□UO24 show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba8BIIB□U4O24), compared to cubic 1:1 ordered perovskites A2BMO6. In the series Ba8BaB□W4O24 and Sr8SrB□W4O24 different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A2BMO6, the cell contains eight formula units ABIIB□W4O24. The higher ordered cells with UVI and WVI are face centered, which has its origin in an ordering of cationic vacancies.  相似文献   

12.
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 53. Preparation, Properties, and Vibrational Spectra of the Cage Anions P113? and As113? The Zintl-phases M3X11 (M = Na, K, Rb, Cs; X = P, As) are prepared from the elements or from M3X7 and X. The compounds undergo a first-order phase transition from the crystalline to the plastically crystalline state. Unit cell and space group of both modifications and the transition temperature Tc are determined. The vibrational spectra of the crystalline compounds and the Raman spectrum of the P113? anion in en-solution as well are measured. The assignment of the frequencies is given, based on the 32-D3 symmetry of the X113? cage anion. Normal coordinate analysis is carried out in terms of Cartesian coordinates to avoid the problem of redundancies in using internal coordinates. The force constants [mdyn Å?1] obtained for the characteristic bonds r, s, and t are: f = 1.34, f = 1.20, f = 1.08; f = 1.1, f = 0.91. Normal vibrations and the potential energy distribution (PED) are discussed.  相似文献   

13.
Dibromomethylsulfoniumsalts — Preparation and Crystal Structure The salts CH3SBrA? (A? = SbCl, AsF) were prepared by various routes and characterized by their Ramanspectra. CH3SBrAsF crystallized in the monoclinic space group P21/c with a = 770,5(4) pm, b = 942,4(12) pm, c = 1329,3(14) pm, β = 100,28(6)°, Z = 4. Distances and bond angles in the cation are as expected.  相似文献   

14.
Reactions of dry THF/MeCN solutions of Ca[Re6SCl(Cla)6] with silylated derivatives E(SiMe3)2 (E = PhAs, PSiMe3, HN, O, S) and addition of trialkylphosphine PPr3 afford in high yields and at room temperature either the neutral clusters [Re6SX(PPr3)] ( 1 : X = As, 2 : X = P) or the ionic compounds [Re6SX(PPr3)]2+ · [Re6S6Cl8]2– ( 3 : X = NH, 4 : X = O, 5 : X = S). The compounds 1 – 5 were characterised by X‐ray crystal structure analysis. A di‐substitution reaction occurs on the {Re6SCl}4+ cluster core, where the two inner μ3‐chloro ligands Cli are substituted by X (X = As, P, NH, O, S) and all six terminal chloro ligands Cla are exchanged by terminal PPr3‐ligands.  相似文献   

15.
Photoluminescence of Trivalent Rare Earths in Perovskite Stacking Polytypes Ba2La2?x RE MgW2□O12, Ba6Y2?x RE W3□O18, and Sr8SrGd2?xRE W4□O24 Rhombohedral 12 L stacking polytypes Ba2La2?xREMgW2□O12 show with RE3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba6Y2?xREW3□O18 and the polymorphic perovskites Sr8SrGd2?xREW4□O24 with RE3+ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.  相似文献   

16.
Acyl- and Alkylidenephosphanes. XXXV. Bis[ N -(trimethylsilyl)iminobenzoyl]phosphanides of Lithium and Zinc – Syntheses as well as NMR Spectroscopic, Structural, and Quantumchemical Studies From the reaction of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide with two equivalents of benzonitrile in 1,2-dimethoxyethane, the yellow dme complex ( 2 a ) of lithium bis[N-(trimethylsilyl)iminobenzoyl]phosphanide ( 2 ) was obtained in 69% yield. However, the intermediate {1-[N-lithium-N-(trimethylsilyl)amido]benzylidene}trimethylsilylphosphane ( 1 ), formed by an analogous 1 : 1 addition in diethyl ether, turned out to be unstable and as a consequence could be characterized by nmr spectroscopic methods only; attempts to isolate the compound failed, but small amounts of the neutral complex 2 b , with the ligands benzonitrile and tetrahydrofuran coordinated to lithium, precipitated. The reaction of compound 2 with zinc(II) chloride in diethyl ether gives the orange-red spiro-complex zinc bis{bis[N-(trimethylsilyl)iminobenzoyl]phosphanide} ( 3 ); this complex is also formed from bis[N-(trimethylsilyl)iminobenzoyl]phosphane ( 4 ), easily amenable by a lithium hydrogen exchange of 2 a with trifluoroacetic acid [18], and zinc bis[bis(trimethylsilyl)amide]. As derived from nmr spectroscopic studies and x-ray structure determinations, compounds 2 a {δ31P +63.3 ppm; P21/n; Z = 4; R1 = 0.067}, 2 b {δ31P +63.3 ppm; P21/c; Z = 4; R1 = 0.063}, 3 {δ31P +58.2 ppm; C2/c; Z = 4; R1 = 0.037} and 4 {δ31P +58.1 ppm [18]} exist as cyclic 3-imino-2λ3σ2-phosphapropenylamides and -propenylamine, respectively, in solution as well as in the solid state. Unlike hydrogen derivative 4 the bis[N-(trimethylsilyl)iminobenzoyl]phosphanide fragments N,N′-coordinating either a lithium or a zinc cation are characterized by almost completely equalized bond lengths; typical mean distances and angles are: PC 180.3 and 178.7; CN 130.5 and 131.8; N–Si 175.3 and 179.3; N–Li 202.3; N–Zn 203.5 pm; CPC 108.8° and 110.5°; PCN 130.9° and 132.9°; CN–Li 113.0°, CN–Zn 117.4°; N–Li–N 104.6°; N–Zn–N 108.8°. Alterations in the shape of the six membered chelate rings, caused by an exchange of the 3-imino-2λ3σ2-phosphapropenylamide or related 2λ3σ2-phospha-1,3-dionate units for the corresponding phosphorus free ligands, are discussed in detail. The results of quantumchemical DFT-B3LYP calculations coincide very well with the experimentally obtained findings.  相似文献   

17.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

18.
Preparation and Spectroscopic Characterization of the Cluster Anion [(Mo6Cl )(CF3COO) ]2? On heating of [(Mo6Cl)Cl]2? in dichloromethane with trifluoroacetic acid the new stable cluster anion [(Mo6Cl)(CF3COO)]2? is formed by elimination of HCl. The (Mo6Cl) unit remains unattacked. The 19F nmr spectrum exhibits a downfield shifted singulett as compared to free CF3COO? indicating the equivalence of all trifluoroacetate ligands, which unidentate coordination is deduced from characteristic i. r. frequencies of the carboxyl groups. The most intense i.r. band at 501 cm?1 is assigned to the antisymmetric Mo? Oa vibration, the most intense Raman line at 319 cm?1 to the breathing mode of the Cl cube.  相似文献   

19.
On the Crystal Structure of O MF (M = Sb, Ru, Pt, Au) OMF (M = Sb, Ru, Pt, Au) were obtained again, but for the first time investigated by X-ray methods. Colourless OSbF and the rubyred compounds ORuF and OPtF crystallize isostructural in space group Ia3 -Th7 (Nr. 206) with a = 1016(1) pm (Sb), a = 1002.6(9) pm (Ru) and a = 1003.6(9) pm (Pt), Z = 8. Yellow OAuF crystallizes trigonal-rhombohedric in space group R3 -D326 (Nr. 148) with a = 775.9(3) pm, c = 711.7(4) pm, Z = 3.  相似文献   

20.
Silaheterocycles. III. Synthesis and Reactivity of Di-tbutylneopentylsilaethene, Bu Si?CHCH2But The three di-tbutylvinylsilanes BuSi(X)CH?CH2 (X = H 5 , X = F 9 , X = Cl 22 ) are prepared by the reaction of their SiCl precursors with vinyl lithium. In the treatment with LiBut the first step is the generation of the α-lithio compound BuSi(X)CH(Li)CH2But, the following reactions are governed by the nature of the substituent X and the reaction conditions (solvent, concentration, temperature). For X = H 2,3-LiH elimination leads to BuSi(H)CH?CHBut ( 7 ), with X = F or Cl Si?C formation by 1,2-LiX elimination competes with intermolecular Si-C-coupling producing BuSi(H)CH(SiBuCH?CHBut)CH2But ( 13 ) as the main product. BuSi?CHCH2But ( 1 ) probably coordinates to LiBut and reacts to yield BuSiCH?CHBut ( 3 ) and 7 , forms tetrabutyl-dineopentyl-1,3-disilacyclobutane 2 by cyclodimerization and 13 by addition of BuSi(X)CH(Li)CH2But.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号