首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbulent flow through a long pipe terminated by an axisymmetric cavity can give rise to self-sustained oscillations exhibiting a very strong coherence, as evidenced by the narrow-band character of corresponding amplitude spectra. These oscillations, associated with the turbulent axisymmetric jet passing through the cavity, are strongly influenced by the acoustic modes of the pipe. The frequencies of oscillation lie within or near the range of most “unstable” frequencies of the turbulent jet previously predicted by using concepts of inviscid hydrodynamic stability theory; consequently, these experiments show truly self-excited and strongly coherent “instability” of a fully turbulent, low Mach number (~10?2), axisymmetric flow undergoing separation, corroborating previous experiments involving the external forcing of free turbulent jets. As flow velocity or cavity length is varied, both upward and downward jumps in oscillation frequency are observed; the sign (up or down) of these jumps tends to systematically alternate with increase of velocity or length. The role of these frequency jumps is, in effect, to allow the oscillation of the flow to remain “locked-on” to a pipe mode over a wide range of impingement length or flow velocity. Moreover, these jumps exhibit two types of behavior: for the first kind, the predominant frequency makes a relatively continuous transition between stages and the frequency of the neighboring stage appears as a secondary component; for the second kind, there is a dead zone (where no oscillation occurs) between stages. The consequence of externally exciting the system is strongly dependent on whether the self-sustaining oscillation is relatively near, or well away from, a frequency jump. During excitation, the amplitudes of pressure fluctuations in the cavity substantially exceed the corresponding no-flow values only in regions away from the frequency jumps; at locations of jumps, there can be significant attenuation of the no-flow excitation amplitude. For the type of frequency jump involving a “dead zone”, enhancement of a given mode of oscillation can be achieved by externally exciting not only the given mode, but also neighboring modes. For the other type of jump, involving a relatively continuous transition from one stage to the next, the predominant mode of oscillation following the jump is that mode giving maximum amplitude response to excitation before the jump.  相似文献   

2.
The results of an experimental study of non-linear longitudinal gas oscillations in a closed tube are presented. Forced oscillations greater than in other experiments to date are obtained. A brief representation of the theory holding for excitation frequencies near and equal to the natural frequencies of a gas column is given. The experimental amplitude and the periodic shock wave form are compared with the calculated values. Oscillations whose excitation frequencies are twice as small as the first natural frequency are also studied.  相似文献   

3.
根据脉动热管薄液膜蒸发和凝结相变换热的特点,对基于体积分数法的VOF相变进行了改进,建立了单环路板式脉动热管的三维流固耦合仿真模型,对高充液率下的定向循环工作特性和传热性能进行了数值研究。结果表明:仿真得到的泡状流,柱塞流以及环状流的分布以及转换规律和可视化实验结果较好吻合;在一定的充液率下,随着热负荷的增加,热阻先减小,然后上升,充液率越低,热阻越小,和实验结果的热阻误差在10%以内。分析发现,除了相变换热系数,脉动热管的热阻还和系统压力密切有关,高充液率、高功率下,内部压力(相变温度)上升过快,是其热阻升高的主要原因之一。  相似文献   

4.
《Physics letters. A》1987,122(9):467-470
For the case of fully developed turbulent pipe flow at Re=28500 the correlation dimension was calculated. As the algorithm did not converge towards a definite dimension it can be concluded that the actual dimension of this flow is at least higher than 10.  相似文献   

5.
An attempt was made to correlate light beam absorption with the longitudinal dispersion of ink in turbulent pipe flow. Ink was injected into water flowing in a 2.22 cm ID pipe and the light beam produced by a laser traversed the pipe through transparent sections. Light beam attenuation by the ink pulse was measured with a photodiode and recorded by various means. Attenuation was measured at two locations downstream of the injection point. Since the attenuation was calibrated for ink density, theoretical prediction of the ink density distribution and the resulting light attenuation at the points of laser traverse was produced. The theoretical density distribution was based on only the first order source of longitudinal dispersion: the velocity gradient. The comparison between theory and experiment shows that, over a wide range of turbulence, dispersion was almost entirely due to velocity gradient and can be conveniently measured by the light beam absorption technique.  相似文献   

6.
7.
The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by threedimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.  相似文献   

8.
We present a theory of resonance oscillations at doubled and tripled frequencies in a pipe open at one end. The boundary condition at the open end is obtained with allowance for the subharmonicity of speed fluctuations at the open end; it does not contain empirical parameters. Quite good qualitative and quantitative coincidence of the theoretical and experiment results is achieved.  相似文献   

9.
We introduce a noninvasive, quantitative magnetic resonance imaging (MRI) wind-tunnel measurement in flowing gas (>10 m s(-1)) at high Reynolds numbers (Re>10(5)). The method pertains to liquids and gases, is inherently three dimensional, and extends the range of Re to which MRI is applicable by orders of magnitude. There is potential for clear time savings over traditional pointwise techniques. The mean velocity and turbulent diffusivity of gas flowing past a bluff obstruction and a wing section at realistic stall speeds were measured. The MRI data are compared with computational fluid dynamics.  相似文献   

10.
Spectra of the streamwise velocity component in fully developed turbulent pipe flow are presented for Reynolds numbers up to 5.7x10(6). Even at the highest Reynolds number, streamwise velocity spectra exhibit incomplete similarity only: while spectra collapse with both classical inner and outer scaling for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete, and a region varying with the inverse of the streamwise wave number, k(1), is not expected, and any apparent k(-1)(1) range does not attract any special significance and does not involve a universal constant. Reasons for this are suggested.  相似文献   

11.
In the present work, the use of cylindrical turbulators in a double pipe heat exchanger has been investigated. Cylindrical fin type of turbulators has been placed circumferentially separated by 90° on the outer side of an inner pipe at a regular pitch. Experimental studies were undertaken for different air flow rates in a turbulent regime whose Reynolds number range between 2500 and 10000. Heat transfer characteristics like Nu and friction factor have been experimentally determined. Parametric studies were conducted by changing the pitch and also the orientation of the turbulators. Nu and friction factor were found to increase as the pitch is reduced. A model with alternatively changed orientation outperformed others by exhibiting highest Nu and reduced friction factor.  相似文献   

12.
Acoustic streaming accompanying acoustic resonance oscillations of gas in a tube is considered. The effect of both the Prandtl number and the wall loss on the velocity of acoustic streaming in a viscous heat-conducting medium is investigated. Expressions for the longitudinal and transverse components of the flow velocity are obtained.  相似文献   

13.
Numerical modeling of heat exchange at a laminar stationary and pulsatile flow in rectangular channels with different aspect ratios of side lengths γ has been carried out by a finite difference method for two boundary conditions: a constant wall temperature and a constant heat flux density on the wall. For the boundary condition of the first kind, the similarity of distributions of the heat flux density and shear stress on the walls over the channel perimeter has been established. The reasons for a nonmonotonous dependence of the initial thermal interval length on γ are discussed. For the boundary condition of the second kind, the difference of the Nusselt number averaged over the perimeter at γ → 0 from its value for a flow in a flat channel has been explained. An increase in the Nusselt number averaged over the perimeter and the period of oscillations has been revealed for a pulsatile flow in the quasi-stationary regime at large amplitudes of the oscillations of the velocity averaged over the cross section.  相似文献   

14.
Stability of the combined flow of liquid film and turbulent gas is studied theoretically for an arbitrary angle between the directions of gas flow and gravity force. The three-dimensional wave flow of the film is described on the basis of integral approach and quasilaminar model of the turbulent gas flow. Increment and phase velocity of waves are calculated for the case of a vertical film and horizontal gas flow depending on the direction of their propagation. According to calculations, the cross gas flow increases the instability area significantly as well as the range of directions for propagation of the fast growing perturbations on the film surface.  相似文献   

15.
Heat transfer in a viscous liquid film moving under the action of gravity and a gas flow on a substrate with a locally heated rectangular area is investigated. The heat exchange coefficient is given on the liquid-gas surface; the heat flux to the liquid is given on the heated area; the substrate surface outside the heated area is heat-insulated. An analytical solution in a form of a convergent series is obtained for the liquid temperature distribution in the film. The influence of the dimensionless criteria on the obtained solution is analyzed. The effect of heat flux inhomogeneity on the temperature distribution is considered.  相似文献   

16.
17.
18.
The wavy downflow of a viscous liquid film in the presence of the turbulent gas flow was analyzed theoretically. Two-dimensional stationary running waves are calculated in a wide range of Reynolds numbers of liquid and gas. Hydrodynamics of liquid is calculated based on complete Navier-Stokes equations. The wave interface surface is considered as a small perturbation and equations in gas are linearized near the main turbulent flow. Different optimal downflow regimes are determined, and the main wave characteristics are compared in detail with and without the co- and counter-current gas flows. It is shown that at high velocities of the co-current gas flow, the calculated waves correspond to ripples observed in experiments.  相似文献   

19.
It is shown that the exchange of perturbations of moving active medium components, such as a CO2-N2 laser working mixture, results in the damping of relaxation oscillations and stabilization of stationary lasing. Analytical expressions for frequencies and increments of relaxation oscillations and their self-excitation threshold are obtained using the characteristics of stationary lasing.  相似文献   

20.
Dynamic features of a freely propagating turbulent premixed flame under global stretch rate oscillations were investigated by utilizing a jet-type low-swirl burner equipped with a high-speed valve on the swirl jet line. The bulk flow velocity, equivalence ratio and the nominal mean swirl number were 5 m/s, 0.80 and 1.23, respectively. Seven velocity forcing amplitudes, from 0.09 to 0.55, were examined with a single forcing frequency of 50 Hz. Three kinds of optical measurements, OH-PLIF, OH* chemiluminescence and PIV, were conducted. All the data were measured or post-processed in a phase-locked manner to obtain phase-resolved information. The global transverse stretch rate showed in-phase oscillations centering around 60 (1/s). The oscillation amplitude of the stretch rate grew with the increment of the forcing amplitude. The turbulent flame structure in the core flow region varied largely in axial direction in response to the flowfield oscillations. The flame brush thickness and the flame surface area oscillated with a phase shift to the stretch rate oscillations. These two properties showed a maximum and minimum values in the increasing and decreasing stretch periods, respectively, for all the forcing amplitudes. Despite large variations in flame brush thickness at different phase angles, the normalized profiles collapse onto a consistent curve. This suggests that the self-similarity sustains in this dynamic flame. The global OH* fluctuation response (i.e. response of global heat-release rate fluctuation) showed a linear dependency to the forcing velocity oscillation amplitudes. The flame surface area fluctuation response showed a linear tendency as well with a slope similar to that of the global OH* fluctuation. This indicated that the flame surface area variations play a critical role in the global flame response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号