首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
Although the principal mechanisms of crossflow microfiltration (MF) are well-known, the practical applicability of the resulting microfiltration models is still limited. This can be largely attributed to the lack of understanding of effects of polydispersity in the particulate suspensions, as relevant to concentration polarisation in MF. This paper describes an investigation of concentration polarisation behaviour of bidisperse suspensions, in the regime where shear-induced diffusion is the dominant back-transport mechanism. In the transient flux regime, the particle deposition onto the membrane was monitored by means of confocal scanning laser microscopy. As in accordance with the linear dependence of the shear-induced diffusivity on a2, only the small particles in the bidisperse suspensions were found to deposit onto the membrane. The back-transport flux that was calculated from the deposition rate and the actual permeate flux, was found to be independent of the composition of the suspension, whereas it was equal to the back-transport flux of a monodisperse suspension of the small particles only, with a similar total particle fraction. These results can be explained with the occurrence of particle size segregation in the feed flow, which leads to an enrichment with small particles of the suspension near the membrane. The findings are also shown to be relevant to particle fractionation processes by MF. In such fractionation processes, particle size segregation is found to have a strong effect on the separation characteristics such as particle size and fat content of the permeate. A polydisperse suspension could be fractionated using a membrane having a pore size larger than the largest particles present. The fractionation thus results not from size exclusion in the membrane, but from segregation effects in the feed channel.  相似文献   

2.
Aqueous colloid of 2-dimensional (2D) α-ZrP nanoparticles can serve as an excellent material for Kerr devices. We investigate the influence of the particle size on the electro-optical switching for isotropic and biphasic α-ZrP colloids that exhibit stable Kerr effect. Smaller sized α-ZrP colloid has wider range of isotropic and biphasic phases, but since the anisotropic polarizability is approximately proportional to square diameter of particles, the larger sized α-ZrP colloid has higher birefringence at a given concentration. The dynamic response time is also dramatically influenced by the particle size. Smaller sized particle has lower viscosity, and the fall time monotonically increases with increasing particle size. However, the rise time has the minimum at around 0.6 μm owing to the competitive contributions of the anisotropic polarizability and the rotational viscosity. Thus, the particle size in α-ZrP colloid is an important factor to determine the electro-optical performance of a Kerr device based on 2D α-ZrP colloids. These findings will be important in developing electro-optical devices using lyotropic liquid crystal colloids.  相似文献   

3.
Colloidosomes, namely, microcapsules coated by a colloidal shell, have been widely studied as potential carriers of active compounds for various applications. The colloidal shell differs from the shells of other ‘somes’ (liposomes, polymersomes) since it is a composite material with an impenetrable phase—the particles, and a penetrable one—the voids or pores between them. Recent analysis shows that in the shells composed of monodisperse and charged particles, the maximal volume fraction of colloids in the self-assembled layer depends on the size ratio between the particle's hard-sphere radius and the effective radius, which includes the range of repulsive electrostatic interactions. Thus, somewhat counter-intuitively, the density of particles in the shell increases with increasing particle radius. However, mixing particle sizes can lead to highly packed shells where the impenetrable phase volume fraction approaches 100%. The diffusional flux through the colloidal shell is highly sensitive to the packing density (or particle volume fraction); this parameter sets the average size of the pores, their distribution through the shell, and their tortuosity. However, while in thick multi-layer shells the flux increases with increasing particle size, in the case of monolayer-thick shells there is no apparent dependence of the flux on the colloid dimensions.  相似文献   

4.
Heavy-metal-containing humic colloids from seepage water samples of three different municipal waste disposal plants were characterized in terms of molecular weight, hydrodynamic radius and heavy metal content. The size distribution of the colloids was determined with ultrafiltration (UF) and flow field-flow fractionation (flow FFF). The humic colloids in the seepage water samples were characterized using an off-line coupling of flow FFF with an enzyme-linked immunosorbent assay (ELISA) for humic substances. The heavy metals in the different size fractions obtained by UF and flow FFF were determined using atomic absorption spectroscopy (AAS). The colloid size distributions obtained with UF showed a maximum of the distribution in the range 1–10 nm. Seepage water samples with high colloid concentrations had a second maximum in the range 0.1–1 m. The determination of colloid size with flow FFF gave different colloid size distributions for the three waste disposal seepage waters, whereas water from the oldest disposal plant showed the smallest colloid size with a maximum at 0.9 nm and water from the most recent plant showed the largest colloid size with a maximum at 1.3 nm. The determination of particle classes with regard to the chemical composition using a scanning electron microscope with energy dispersive X-ray fluorescence detector (SEM/EDX) showed that the particles can be divided into five classes: silicates, insoluble salts, iron(hydr)oxides, carbonates and organic colloids (humic colloids). Flow FFF/ELISA off-line coupling showed that the most frequently occurring colloids of the seepage waters were humic colloids and investigation of the UF-size-fractions with AAS showed that up to 77% of the total mass of a heavy metal element can be bound to particles, especially to humic colloids. Additionally, the distributions of the heavy metals Fe, Cu and Zn were investigated with flow FFF/AAS off-line coupling. These results also showed that a substantial amount of these heavy metals (up to 46%) was bound to humic colloids.  相似文献   

5.
Uniformly-sized, single-crystal alpha-quartz nanospheres have been synthesized at 200 °C and 15 atm under continuous stirring starting from uniform, amorphous St?ber silica colloids and using NaCl and alkali hydroxide as mineralizers. Quartz nanosphere size is controlled by the colloid particle size via direct devitrification. Uniform, high-purity nanocrystalline quartz is important for understanding nanoparticle toxicology and for advanced polishing and nanocomposite fabrication.  相似文献   

6.
The effect on the short time one particle diffusion coefficient of hydrodynamic interaction between pairs of colloid particles, and between colloid particles and the walls of a quasi-one-dimensional cylindrical channel, are calculated using the method of reflections. The nonzero size of the colloid particle is accounted for in the analysis, and the theoretical predictions are compared with the experimental data of Lin, Cui, Lee, and Yu for the short time one particle diffusion coefficient of colloids in a square open channel [Europhys. Lett. 57, 724 (2002)].  相似文献   

7.
The dynamics of growth and aggregation of colloidal silver iodide particles was followed by the static light scattering method. The particles were treated as spheres and they were stable in size in the defined time interval. This approach enabled the use of the Zimm plots in order to determine the radii of gyration and the radii of spherical particles. Stable AgI colloids, either positively or negatively charged, showed the usual Zimm diagrams, while the diagrams were untypical when the stability of the colloids decreased. The untypical Zimm diagrams showed 'curves' with envelopes and 'curves' with minima in the unstable domain and in the domain where the most rapid nucleation occurs, respectively. Satisfactory agreement of particle sizes within the limits of accuracy, determined using static--and dynamic light scattering data and of the values obtained from the electron microscopic images was shown. Fitting the theoretical and experimental data, P(theta) functions showed that the particle shapes approach the theoretical model for spheres and thin discs. The colloid stability of polydispersed aggregates was also explained using the second virial coefficient, its negative sign implying interaction of particles in the solution, its positive value indicating formation of new particles from the supernatant solution. In addition, the colloid stability can be characterised by the mass fractal dimension. For positive stable colloids, Dm = 2.70 +/- 0.26, it can be related to the reaction controlled processes, whereas for negative stable colloids, Dm = 1.97 +/- 0.19, it was attributed to the diffusion controlled processes.  相似文献   

8.
Analysis in a single particle mode of gold colloids in water has been performed by inductively coupled plasma-mass spectrometry (ICP-MS). The signal induced by the flash of ions due to the ionization of a colloid in the plasma torch can be measured for the ions 197Au+ by the mass spectrometer without interferences. The intensity of the MS signal is recorded in time scan. The recorded peak distributions were analysed as a function of the colloid size for five monodisperse colloids (80-250 nm). This study describes the experimental conditions to analyse gold colloids in a single particle mode. The size detection limit is around 25 nm corresponding to 0.15 fg colloids and one particle per ml may be detected during a 1 min time scan within standard procedure.  相似文献   

9.
Flow-field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) was evaluated for size and shape determination of standard spherical and arbitrarily shaped natural colloids. Different fitting methods for light scattering data retrieved from MALLS were evaluated to determine the particle size of spherical standards and natural colloids. In addition, FlFFF was optimized for best fractionation in connection to MALLS, minimal colloids-membrane interaction, and minimal sample losses. FlFFF, calibrated with standard particles, was used to determine hydrodynamic diameter, or radius (D(h) or R(h)), of the fractionated colloids, whereas the MALLS was used to determine root mean square radius of gyration (R(g)) for fractionated colloids. Combining both results, by calculating the R(g)/R(h) ratio, allows an estimation of colloid deviation from the shape of homogeneous sphere. Accordingly, this study demonstrates that, FlFFF-MALLS is a valuable technique for characterizing heterogeneous and arbitrarily shaped natural colloidal particles in terms of size and shape. To check the usefulness of FlFFF-MALLS in natural colloid studies, the technique was used to investigate the sedimentation behavior of extracted soil colloidal particles. Results illustrate that, in a silty till sample, carbonates function as cement between the colloidal particles, and consequently, change their sedimentation behavior. On the other hand, carbonate dissolution generates a more homogeneous colloidal sample.  相似文献   

10.
Particle growing processes were investigated for technetium(VII) sulfide (Tc2S7) colloids produced in a mixture of Na2S and TcO4 - solutions by laser-induced photoacoustic spectroscopy (LPAS). Analysis of the LPAS signal intensities indicated that the particle size increased in the solution with an increase of standing time, while the number of particles remained constant. It was revealed that the size of colloid particles increased by deposition of Tc2S7 on the particle surfaces, not by coagulation of colloid particles. The formation mechanism and growing process of the colloids are discussed based on the LaMer model, which deals with nucleation processes.  相似文献   

11.
PET/PC共混体系的酯交换反应对其高压结晶行为的影响   总被引:1,自引:1,他引:0  
利用转矩流变仪、DSC、SEM及WAXD等表征手段研究了PET/PC共混体系的酯交换反应对其高压结晶行为的影响.SEM观察表明,PET和PC熔混时的酯交换反应有利于PET/PC体系在高压结晶时生成厚度较大的伸直链晶体,且可以促进其高压下酯交换反应的发生.楔形伸直链晶体和弯曲伸直链晶体的存在证明链滑移扩散和酯交换反应两种机制对体系中聚酯伸直链晶体的增厚有贡献.拟合分峰法和War-ren-Averbach傅里叶分析法的计算结果表明,随PET/PC体系熔混时酯交换反应程度的增加,高压结晶共混物的结晶度降低,PET的平均微晶尺寸增大,点阵畸变平均值则减小,而微晶尺寸分布变宽.提出了在共聚物组分都具备结晶能力时,结晶诱导化学反应和化学反应诱导结晶两种过程在一定条件下可同时发生的观点.  相似文献   

12.
Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution and stabilized by polyvinyl alcohol (PVA) were synthesized. The particles were prepared by a coprecipitation technique using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Using a design of experiments (DOE) approach, the effect of different synthesis parameters (stirring rate and base molarity) on the structure, morphology, saturation magnetization, purity, size, and size distribution of the synthesized magnetite nanoparticles was studied by various analysis techniques including X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC) measurements, vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), UV-visible, and Fourier transform infrared (FT-IR) spectrometer. PVA not only stabilized the colloid but also played a role in preventing further growth of SPION followed by the formation of large agglomerates by chemisorption on the surface of particles. A rich behavior in particle size, particle formation, and super paramagnetic properties is observed as a function of molarity and stirring conditions. The particle size and the magnetic properties as well as particle shape and aggregation (individual nanoparticles, magnetic beads, and magnetite colloidal nanocrystal clusters (CNCs) are found to be influenced by changes in the stirring rate and the base molarity. The formation of magnetic beads results in a decrease in the saturation magnetization, while CNCs lead to an increase in saturation magnetization. On the basis of the DOE methodology and the resulting 3-D response surfaces for particle size and magnetic properties, it is shown that optimum regions for stirring rate and molarity can be obtained to achieve coated SPION with desirable size, purity, magnetization, and shape.  相似文献   

13.
胶体颗粒在聚电解质多层膜表面的可控组装   总被引:2,自引:1,他引:1  
利用原子力显微镜和扫描电子显微镜研究了磺化聚苯乙烯胶体颗粒在由聚二甲基二烯丙基氯化铵和聚苯乙烯磺酸钠层状自组装而成的多层膜表面的组装.该组装受表面性质影响,通过对多层膜的最外层的组装条件或利用盐溶液对多层膜进行后处理可以控制胶体颗粒在膜表面的组装密度.  相似文献   

14.
We systematically study the properties of dispersions of iron-based colloids synthesized in a broad size range by thermal decomposition of ironcarbonyl using different stabilizing surfactants. The synthesis results in stable dispersions of monodomain magnetic colloids. Our particles appear to consist of an amorphous Fe(0.75)C(0.25) alloy. Sizes of particles coated with modified polyisobutene or oleic acid can be easily controlled in the 2-10 nm range by varying the amounts of reactants. Extensive characterization with various techniques gives particle sizes that agree well with each other. In contrast to dispersions of small particles, which consist of single colloids, dynamic aggregates are present in dispersions of larger particles. On exposure to air, an oxide layer forms on the particle surface, consisting of a disordered Fe(III) oxide.  相似文献   

15.
The combination of asymmetrical flow field-flow fractionation (AsFlFFF) with the laser-induced breakdown detection (LIBD) is presented as a powerful tool for the determination of colloid size distribution at trace particle concentrations. Detection limits (D1) of 1, 4, and 20 microg/L have been determined for a mixture of polystyrene reference particles with 20, 50, and 100 nm in size, respectively. This corresponds to injected masses of 1, 4, and 20 pg, which is lower than found in a previous study with the symmetrical FlFFF (SyFlFFF). The improvement is mainly due to the lower colloid background discharged from the AsFlFFF channel. The combined method of AsFlFFF-LIBD is then applied to the analysis of iron oxi/hydroxide colloids being considered as potential carriers for the radionuclide migration from a nuclear waste repository. Our LIBD arrangement is less sensitive for iron colloid detection as compared to reference polystyrene particles which results in a detection limit of approximately 240 microg/L FeOOH for the AsFlFFF-LIBD analysis. This is superior to the detection via UV-Vis absorbance and comparable to ICP-MS detection. Size information (mean size 11-18 nm) for different iron oxi/hydroxide colloids supplied by the present method is comparable to that obtained by sequential ultrafiltration and dynamic light scattering. A combined on-line ICP-MS detection is used to gain insight into the colloid-borne main and trace elements.  相似文献   

16.
 The effect of varying the oxidant, monomer and silica sol concentrations, silica sol diameter, polymerization temperature, stirring rate and oxidant type, on the particle size, polypyrrole content and conductivity of the resulting polypyrrole– silica colloidal nanocomposites has been studied. Surprisingly, nanocomposite formation appears to be relatively insensitive to most of the above synthesis parameters. One synthesis parameter which does have a significant and reproducible effect is the stirring rate: smaller, more monodisperse nanocomposite particles are obtained from rapidly stirred reaction solutions. However, this effect is only observed for the (NH4)2S2O8 oxidant. An alternative oxidant, H2O2/Fe3+, was found to give nanocomposites of similar particle size, polypyrrole content and conductivity to those obtained using the (NH4)2S2O8 oxidant. The colloid stability of these polypyrrole–silica nanocomposite particles depends on their silica content. The colloid stability of a silica-rich nanocomposite prepared using the (NH4)2S2O8 oxidant in the presence of electrolyte was comparable to that of a silica sol, whereas a polypyrrole-rich nanocomposite prepared using FeCl3 had markedly poorer colloid stability under these conditions. These observations are consistent with a charge stabilization mechanism for these nanocomposite particles. Received: 5 March 1998 Accepted: 27 April 1998  相似文献   

17.
Soft and responsive colloids based on polymer hydrogels have moved into the focus of the colloid community. This review gives a brief overview of the recent literature on the structure and phase behavior of neutral and ionic poly(N-isopropylacrylamide) microgel dispersions from dilute to over-packed conditions, focusing in particular on the ability of these particles to adapt their size and shape in response to external stimuli. The review is hierarchical; it first covers the aspects of an individual microgel particle viz., the internal structure of inhomogeneous and homogeneously cross-linked particles, followed by studies of ensembles of particles covering in particular structural ordering, phase behavior, and liquid–solid and solid–solid transitions. Insights on the ability of the microgel particles to deform, compress, and interpenetrate beyond the close-packed volume fractions are discussed. Building complex architectures using microgel particles for fundamental studies as well as future applications is reviewed towards the end of the article.  相似文献   

18.
Polarisation of a retentive UF membrane has been studied for three types of solute, a colloid (silica sol), a protein (albumin) and a branched chain polymer (Dextran), with and without stirring. For unstirred conditions the data have been analysed by modified constantpressure filtration theory, which gives specific resistances, a, of the solutes consistent with their sizes and conformation. The simple Carman—Kozeny relationship approximates a for the colloid and the protein. For all three solutes a increased with pressure and concentration. Times to steady-state flux for stirred conditions ranged from 10 to 50 seconds, with longest times for the lowest concentrations and the largest solute. The amount of solute in the polarised layer was estimated from the measured cake (gel) resistances and the known specific resistances. Layer thicknesses ranged up to to ? 5 μm for the protein, ? 6μm for the Dextran and ? 20 μm for the silica sol. Slight deviations of flux—time profiles from the filtration model are explained by membrane—solute interactions, such as irreversible pore plugging and reversible pore obstruction.  相似文献   

19.
In our previous paper, a method for preparing enormous surface-enhanced Raman scattering (SERS) active substrates through the aggregation of silver particles trapped at an air-water interface was reported. Here, further efforts were devoted to investigate the origin of assembling silver particle films by adsorbing nanoparticles from bulk colloids to the air-water interface. It was revealed that it is thermodynamically favorable for a colloidal particle in bulk colloids to adsorb to the air-water interface; however, a finite sorption barrier between it and the nearby particles usually restrains the adsorption process. When an electrolyte such as KCl, which is commonly used as an activating agent for additional SERS enhancement, was added into silver colloids, it largely reduced the sorption barrier. Thus, silver nanoparticles can break through the sorption barrier, pop up, and be trapped at the air-water interface. The trapped silver particles are more inclined to aggregate at the interface than those in bulk colloids due to the increase of van der Waals forces and the reduction of electrostatic forces. The morphology of the as-prepared silver particle films was characterized by scanning electron microscope, and their SERS activity was tested using NaSCN as a probe molecule. The surface enhancement of the silver particle films is about 1-2 orders of magnitude higher compared with that of silver colloids, because most of the silver particles in the films are in the aggregation form that provides enormous SERS enhancement. Furthermore, the stability of such type of films is much better that of colloid solutions.  相似文献   

20.
Abstract

Steady-state and transient models are reviewed for predicting flux decline for crossflow microfiltration under conditions in which both external cake buildup and internal membrane fouling are contributing factors. Experimental work is not covered in the scope of this review, although reference is made to a few recent studies which have compared experimental measurements with theory. The steady-state cake thickness and permeate flux are governed by the concentration polarization layer adjacent to the cake of rejected particles which forms on the membrane surface. Depending on the characteristic particle size and the tangential shear rate, Brownian diffusion, shear-induced diffusion, or inertial lift is considered to be the dominant mechanism for particle back-transport in the polarization layer. For typical shear rates, Brownian diffusion is important for submicron particles, inertial lift is important for particles larger than approximately ten microns, and shear-induced diffusion is dominant for intermediate-sized particles. For short times, it is shown that the transient flux decline due to cake buildup is closely approximated by deadend batch filtration theory, independent of the tangential shear rate. For long times, however, the steady or quasi-steady flux increases with shear rate, because the tangential flow sweeps particles toward the filter exit and reduces cake buildup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号