首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an experimentally accessible measure of entanglement in many-fermion systems that characterizes interaction-induced ground state correlations. It is formulated in terms of cross correlations of currents through resonant fermion levels weakly coupled to the probed system. The proposed entanglement measure vanishes in the absence of many-body interactions at zero temperature and it is related to measures of occupation number entanglement. We evaluate it for two examples of interacting electronic nanostructures.  相似文献   

2.
Finite quantum many fermion systems are essential for our current understanding of Nature. They are at the core of molecular, atomic, and nuclear physics. In recent years, the application of information and complexity measures to the study of diverse types of many-fermion systems has opened a line of research that elucidates new aspects of the structure and behavior of this class of physical systems. In this work we explore the main features of information and information-based complexity indicators in exactly soluble many-fermion models of the Lipkin kind. Models of this kind have been extremely useful in shedding light on the intricacies of quantum many body physics. Models of the Lipkin kind play, for finite systems, a role similar to the one played by the celebrated Hubbard model of solid state physics. We consider two many fermion systems and show how their differences can be best appreciated by recourse to information theoretic tools. We appeal to information measures as tools to compare the structural details of different fermion systems. We will discover that few fermion systems are endowed by a much larger complexity-degree than many fermion ones. The same happens with the coupling-constants strengths. Complexity augments as they decrease, without reaching zero. Also, the behavior of the two lowest lying energy states are crucial in evaluating the system’s complexity.  相似文献   

3.
We study nodes of fermionic ground state wave functions. For two dimensions and higher we prove that spin-polarized, noninteracting fermions in a harmonic well have two nodal cells for arbitrary system size. The result extends to noninteracting or mean-field models in other geometries and to Hartree-Fock atomic states. Spin-unpolarized noninteracting states have multiple nodal cells; however, interactions and many-body correlations generally relax the multiple cells to the minimal number of two. With some conditions, this is proved for interacting two and higher dimensions harmonic fermion systems of arbitrary size using the Bardeen-Cooper-Schrieffer variational wave function.  相似文献   

4.
It is proved that a recent conjecture that the exact ground-state wave function of an arbitrary many-fermion system with one- and two-body interactions may be represented by an exponential cluster expansion employing finite two-body operators, starting from any reference function sufficiently close to the exact eigenfunction, is not valid. We show that the space of initial reference functions which lead to the exact ground state is of dimension equal to the number of two-body operators. If the dimension of the multiparticle space is greater than the number of two-body operators, then the space of good reference functions is of measure zero in it.  相似文献   

5.
We propose to quantify the correlation inherent in a many-electron (or many-fermion) wave function psi by comparing it to the unique uncorrelated state that has the same 1-particle density operator as does /|psi>相似文献   

6.
The nodes of even simple wave functions are largely unexplored. Motivated by their importance to quantum simulations of fermionic systems, we have found unexpected symmetries in the nodes of several atoms and molecules. Here, we report on helium. We find that in both ground and excited states the nodes have simple forms. In particular, they have higher symmetry than the wave functions they come from. It is of great interest to understand the source of these new symmetries. For the quantum simulations that motivated the study, these symmetries may help circumvent the fermion sign problem.  相似文献   

7.
We offer a new proposal for the Monte Carlo treatment of many-fermion systems in continuous space. It is based upon diffusion Monte Carlo with significant modifications: correlated pairs of random walkers that carry opposite signs, different functions "guide" walkers of different signs, the Gaussians used for members of a pair are correlated, and walkers can cancel so as to conserve their expected future contributions. We report results for free-fermion systems and a fermion fluid with 14 3He atoms, where it proves stable and correct. Its computational complexity grows with particle number, but slowly enough to make interesting physics within the reach of contemporary computers.  相似文献   

8.
The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects, a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator are shown to lead to similar results. We find that, being quite small in the case of the symmetric many-fermion system the corrections to mean-field approximation become more important with increasing mass asymmetry.  相似文献   

9.
We investigate the stability of superflow of paired fermions in an optical lattice. We show that there are two distinct dynamical instabilities which limit the superflow in this system. One dynamical instability occurs when the superfluid stiffness becomes negative; this evolves, with increasing pairing interaction, from the fermion pair breaking instability to the well-known dynamical instability of lattice bosons. The second, more interesting, dynamical instability is marked by the emergence of a transient atom density wave. Both dynamical instabilities can be experimentally accessed by tuning the pairing interaction and the fermion density.  相似文献   

10.
A one-dimensional closed interacting Kitaev chain and the dimerized version are studied. The topological invariants in terms of Green's function are calculated by the density matrix renormalization group method and the exact diagonalization method. For the interacting Kitaev chain, we point out that the calculation of the topological invariant in the charge density wave phase must consider the dimerized configuration of the ground states. The variation of the topological invariant is attributed to the poles of eigenvalues of the zero-frequency Green functions. For the interacting dimerized Kitaev chain, we show that the topological invariant defined by Green's functions can distinguish more topological nonequivalent phases than the fermion parity.  相似文献   

11.
We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.  相似文献   

12.
作为密度矩阵一种形式的Wigner函数是量子相空间里的分布。用它描述相对论费密子时,它的通常表达形式为4×4矩阵函数。本文得到相对论带电费密子的2×2矩阵形式的Wigner函数以及它所满足的Liouville方程。这一方程与量子电动力学里带电费密子满足的Dirac方程完全等价。在描述中能核碰撞的Walecka模型里,当只有矢量介子(或标量介于取平均场近似)时,核子满足一定形式的Dirac方程。本文的方程也与之等价。还证明了(2×2)Wigner函数与相对论费密子的波函数在描述量子体系上起着同样的作用。量子体系的可观察量的全部知识都可以通过这里的Wigner函数得到。 关键词:  相似文献   

13.
A convenient method is proposed for exact calculations using wave functions that are products of correlated fermion pairs coupled to zero angular momentum. The method is valid for arbitrary forces and arbitrary single-particle energies. The exact results are compared to various approximations and are used to generate an equivalent s-boson Hamiltonian.  相似文献   

14.
We demonstrate that Majorana fermions exist in edges of systems and in a vortex core even for superconductors with nodal excitations such as the d-wave pairing state under a particular but realistic condition in the case with an antisymmetric spin-orbit interaction and a nonzero magnetic field below the upper critical field. We clarify that the Majorana fermion state is topologically protected in spite of the presence of bulk gapless nodal excitations, because of the existence of a nontrivial topological number. Our finding drastically enlarges target systems where we can explore the Majorana fermion state.  相似文献   

15.
16.
The number of levels of a many-fermion system confined by a harmonic-oscillator potential is computed as a function of excitation energy. Because of its exact nature, the formalism accounts for effects of shell structure on the level density. The method is easily extended to a variety of situations as is illustrated with the inclusion of isospin and deformation effects as well as a calculation of the number of spurious states.  相似文献   

17.
We discuss fermion grading symmetry for quasi-local systems with graded commutation relations. We introduce a criterion of spontaneously symmetry breaking (SSB) for general quasi-local systems. It is formulated based on the idea that each pair of distinct phases (appeared in spontaneous symmetry breaking) should be disjoint not only for the total system but also for every complementary outside system of a local region specified by the given quasi-local structure. Under a completely model independent setting, we show the absence of SSB for fermion grading symmetry in the above sense. We obtain some structural results for equilibrium states of lattice systems. If there would exist an even KMS state for some even dynamics that is decomposed into noneven KMS states, then those noneven states inevitably violate our local thermal stability condition.  相似文献   

18.
In this article, we discuss a method to control the long-range interactions between bosons in a three-dimensional Bose-Fermi mixture with the help of optical lattices on fermions. We find the range and the peaked momentum of the fermion-mediated interactions can be tuned by the optical lattice depth and the fermion density. If the fermion density is close to half-filling, roton excitations can be generated with weak Bose-Fermi interactions. Further, if the fermions are not exact at half-filling, multi-roton structure may emerge, implying competing density orders. Therefore, tuning the lattice depth and the fermion density in a Bose-Fermi mixture serves as an effective way to control the interaction range and resonant momentum between bosons.  相似文献   

19.
Pure spinor formalism and non-integrable exponential factors are used for constructing the conformal-invariant wave equation and Lagrangian density for massive fermion. It is proved that canonical Dirac Lagrangian for massive fermion is invariant under induced projective conformal transformations.  相似文献   

20.
《Nuclear Physics B》1995,437(3):585-610
Lattice proposals for a nonperturbative formulation of the Standard Model easily lead to a global U(1) symmetry corresponding to exactly conserved fermion number. The absence of an anomaly in the fermion current would then appear to inhibit anomalous processes, such as electroweak baryogenesis in the early universe. One way to circumvent this problem is to formulate the theory such that this U(1) symmetry is explicitly broken. However we argue that in the framework of spectral flow, fermion creation and annihilation still in fact occurs, despite the exact fermion number conservation. The crucial observation is that fermions are excitations relative to the vacuum, at the surface of the Dirac sea. The exact global U(1) symmetry prohibits a state from changing its fermion number during time evolution, however nothing prevents the fermionic ground state from doing so. We illustrate our reasoning with a model in two dimensions which has axial-vector couplings, first using a sharp momentum cutoff, then using the lattice regulator with staggered fermions. The difference in fermion number between the time evolved state and the ground state is indeed in agreement with the anomaly. Both the sharp momentum cutoff and the lattice regulator break gauge invariance. In the case of the lattice model a mass counterterm for the gauge field is sufficient to restore gauge invariance in the perturbative regime. A study of the vacuum energy shows however that the perturbative counterterm is insufficient in a nonperturbative setting and that further quartic counterterms are needed. For reference we also study a closely related model with vector couplings, the Schwinger model, and we examine the emergence of the θ-vacuum structure of both theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号