首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
在G3(MP2)水平上,通过对CH_3S与O_2rcyi2rvylce dm (PES)上关键驻点的能 量计算,共找到4种中间体,9个过渡态,6种产物通道,并对这些气相反应机理进 行了讨论,同时应用TST-RRKM理论对主要反应的速率进行计算。结果表明:CH_3S 与O_2反应在低温下以生成CH_3SOO为主,并与实验结果吻合;在中高温下以消去和 抽提反应为主,分别生成CH_3 + SO_2和CH_2S + HO_2,其它产物较少。  相似文献   

2.
CH3S与NO基态反应的机理及动力学   总被引:1,自引:0,他引:1  
在G3(MP2)水平上,通过对CH3S与NO反应势能面(PES)上关键驻点的能量计算,共找到3种中间体、7个过渡态、9种产物通道,并对其反应机理进行了讨论.结果表明此反应主要以两种方式进行一是加成反应,先生成CH3SNO,然后发生单分子解离和异构化反应;二是直接抽提反应,生成CH2S+HNO.用多通道RRKM-TST模型计算了反应随温度和压力变化的速率常数.以295 K的N2作浴气,在200.0~39996.6 Pa压力范围的速率常数为1.6×10-12~1.28×10-11 cm3·molecule-1·s-1.我们计算的速率常数与Balla等的实验值符合较好.反应的速率常数有明显的负温度效应和较强的压力依赖关系.预测常压低温下反应以生成CH3SNO为主,在常压高温1000 K以上以生成CH2S+HNO为主.  相似文献   

3.
The NO2 NO2^- electron transfer reaction was studied with DFT-B3LYP method at 6-311 G^* basis set level for the eight selected structures:four species favor the structure of “head to head”.The geometry of transition state was obtained by the linear corrdinate method.Three parameters,non-adiabatic activation energy(Ead),coupling matrix element(Hif) and reorganization energy(λ) for electron transfer reaction can be calculated.According to the reorganization energy of the ET reaction,the values obtained from George-Griffith-Marcus (GGM) method(the contribution only from diagonal elements of force constant matrix) are larger than those obtained from Hessian matrix method(including the contribution from both diagonal and off-diagonal elements), which suggests that the coupling interactions between different vibrational modes are important to the inner-sphere reorganization energy for the ET reactions in gaseous phase.The value of rate constant was obtained by using above three activation parameters.  相似文献   

4.
CH_3SGN与O_2气相反应机理的理论研究   总被引:1,自引:1,他引:0  
在G3(MP2)水平上,通过对CH_3S与O_2rcyi2rvylce dm (PES)上关键驻点的能 量计算,共找到4种中间体,9个过渡态,6种产物通道,并对这些气相反应机理进 行了讨论,同时应用TST-RRKM理论对主要反应的速率进行计算。结果表明:CH_3S 与O_2反应在低温下以生成CH_3SOO为主,并与实验结果吻合;在中高温下以消去和 抽提反应为主,分别生成CH_3 + SO_2和CH_2S + HO_2,其它产物较少。  相似文献   

5.
The hydrogen abstraction reaction of O(^3P) with Si2H6 has been studied theoretially. Two transition states of ^3A″ and ^3A′ symmetries have been located for this abstraction reaction. Geometries have been optimized at the UMP2 leve with 6-311G (d) basis set. G3MP2 has been used for the final single-point energy calculation. The rate constants have been calculated over a wide temperature range of 200-3000K using canonical variational transition-state sheory (CVT) with small curvature tunneling effect(SCT). The calculated CVT/SCT rate constants match well with the experimental value.  相似文献   

6.
The potential energy surface (PES) of CH3SO radical with NO reaction has been studied at MP2/6-311G(2df, p) and QCISD/6-311G(2df, p) levels. Geometries of the reactants, transition states (TS) and products were optimized at B3LYP/6-311G (d,p) level. The geometries of the transition states were found for the first time. The calculated results show that the reaction can proceed via singlet-state or triplet-state PES. Because of the high energy barrier of triplet surface, the singlet surface reactions are dominant. The topological analysis of electron density shows that there are two kinds of structaral transition states (the bifurcation-type ring structure transition state and the T-shaped conflict structure transition state) in the titled reaction. The total electronic density of the reactants, TS and products and the spin electronic density on the triplet surface were also discussed in this paper.  相似文献   

7.
The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.  相似文献   

8.
Many reactions with fluorine atoms have the important applications in the areas of theatmosphere and the chemical lasers, such as the reaction of fluorine atoms with methane. F( 2 P) CH 4 (X1A1)→HF(X1 Σ ) CH 3 (X 2 A′′2) ?H0300k=-32.3 kcal mol ?1 It…  相似文献   

9.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

10.
1 INTRODUCTION The reactions between halogen and halogen are basic reactions in chemistry. Especially, in the syn- thesis of iodo-substituted aromatic hydrocarbon, the reaction Cl2 I2 = 2ICl could heighten the usage of iodine atom to 100%. So far, to the best of our know- ledge, the studies about halogen-halogen reaction mechanisms are very few. In detail, only the struc- ture and stability studies of X2Y- (X, Y = Cl, Br and I) ions by calculating reaction potential energy sur- face…  相似文献   

11.
The reaction for CH3CH2+N(4S) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single point calculations for all the stationary points were carried out at the QCISD(T)/ 6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2CH2+3NH and H2CN+CH3, and the minor products are the CH3CHN+H in the reaction. The majority of the products CH2CH2+3NH are formed via a direct hydrogen abstraction channel. The products H2CN+CH3 are produced via an addition/dissociation channel. The products CH3CHN+H are produced via an addition/dissociation channel.  相似文献   

12.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

13.
CH2ClO与NO反应机理的理论研究   总被引:3,自引:0,他引:3  
采用B3LYP,MP2方法在6-31 (d,p)和6-311 G(d,p)水平研究了CH2ClO自由基与NO反应的微观机理,找到了三个可能的反应通道.并得到了各反应通道的反应物、中间体、过渡态和产物的优化构型、谐振频率.成功地解释了Wu等的实验结论.从电子密度拓扑分析的角度,讨论了化学反应过程中化学键的变化规律,为实验研究大气化学反应提供理论依据.找到了该反应的结构过渡态(结构过渡区)和能量过渡态,发现了反应热与结构过渡区之间的关系.  相似文献   

14.
The reaction mechanism of (CH3)3CO(.) radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO←→ (CH3)3CO(.)+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO(.) radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO(.)radical.  相似文献   

15.
双自由基CH2与O3反应机理的理论研究   总被引:3,自引:0,他引:3  
用于制冷剂和发泡剂的氯氟烃(CFCs)是破坏臭氧层的主要物质.对氯氟烃类化合物及其降解产物(包括光解、光氧化和化学反应产物等)在大气中行为问题的研究是大气化学研究的重要内容.  相似文献   

16.
The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero‐point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6‐311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6‐311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号