首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The mechanism of 1,2-addition reactions of HF and HCl to Si=Si, Si=C, and C=C bonds has been investigated by ab initio quantum chemical methods. Geometries and relative energies of the stationary points and all the transition states were determined by using the MP2/6-311++G(d,p), B3LYP/6-311++G(d,p), and CBS-Q levels of theory. The investigated reactions can be characterized by two main thermodynamic profiles. The type in which the reagent molecule attacks a carbon atom is moderately exothermic with a high activation barrier. The second type in which a hydrogen halide attacks a silicon is strongly exothermic with a low activation energy. At the early stage of all the reactions a weakly bonded initial complex is found which indicates that the initial step of all the reactions is an electrophilic attack of hydrogen halide. The geometry and charge distribution of the transition state of the reactions indicate two main types of mechanism. If silicon is attacked, the halogen-silicon bond formation precedes the H-Y bond breaking. If, however, carbon is attacked, the first step is always an ionic dissociation of the hydrogen halide and a carbenium ion formation, which is stabilized by the C-Y bond formation in the final step of the reaction. The reaction diagrams and proposed mechanisms explain the experimentally found regioselectivity well.  相似文献   

2.
The concerted and the stepwise mechanisms of the Diels-Alder reactions of butadiene with silaethylene and disilene were studied by ab initio MO methods. For the reaction of butadiene and silaethylene, an asymmetric concerted process that is almost stepwise and two stepwise processes were located. For the first step of the stepwise process, the C-Si bond formation is more favorable than the C-C bond formation. The activation energy barrier of the concerted transition state is only 0.89 kcal/mol lower than that of the first-step transition state of the C-Si bond formation for the stepwise process by the CASPT2 calculation level. For the reaction of butadiene and disilene, the activation energy barrier of the concerted-type transition state constrained with Cs symmetry is about 9 kcal/mol higher than that of the stepwise transition state by the CASSCF method. The energy barrier of the first step of the stepwise reaction disappears at the CASPT2/6-311++G(d,p) calculation level including the nondynamical correlation energy, although the reaction of the butadiene with disilene occurs through the stepwise-like process.  相似文献   

3.
The mechanism of the addition of nonenolizable aldehydes and ketones to group 14 (di)metallenes has been examined through a theoretical study of the addition of formaldehyde to Si=C, Ge=C, Si=Si, Si=Ge, and Ge=Ge bonds at the B3LYP/6-311++G(d,p) and CAS-MCQDPT2/6-31++G(d,p) levels of theory. The reaction pathways located can be grouped as either involving the formation of singlet diradical or zwitterionic intermediates or as concerted processes. Within each group of reaction pathways, several different mechanisms have been located, with not all mechanisms being available to all of the (di)metallenes. It was found that for reactions in which a Si-O bond results (i.e., addition to Si=C, Si=Si, and Si=Ge) both diradical and zwitterionic intermediates are possible; however, the formation of diradical intermediates was not found for reactions that result in the formation of a Ge-O bond (addition to Ge=C and Ge=Ge). The underlying cause of this pathway selectivity is examined, as well as the effect of solvent on the relative energies of the pathways. The results of the study shed light on the cause of experimentally obtained results regarding the mechanism of the reaction of (di)metallenes with nonenolizable ketones and aldehydes.  相似文献   

4.
化甲烷催化剂的可能性. 在B3LYP/6-311++G(3df,3p)和MP2/6-311++G(3df,3p)水平下优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型. 在G2M(+)水平下计算了各物种的能量. 研究结果表明: CH4与Br+(3P)反应存在三条不同的吸热反应途径, 与Br+(1D)反应存在二条不同的放热反应通道. 反应更易于通过单重态反应通道进行. 理论结果不仅较好地解释了实验事实, 还说明Br+有可能成为一种活化甲烷的催化剂.  相似文献   

5.
A series of X,Y-substituted benzhydryl phenyl carbonates 1 and X,Y-substituted benzhydryl methyl carbonates 2 were subjected to solvolysis in different methanol/water, ethanol/water, and acetone/water mixtures at 25 degrees C. The LFER equation, log k = sf(Ef + Nf), was used to derive the nucleofuge-specific parameters (Nf and sf) for phenyl carbonate (1LG) and methyl carbonate (2LG) leaving groups in a given solvent in SN1 type reaction. Kinetic measurements showed that phenyl carbonates solvolyze one order of magnitude faster than methyl carbonates. Optimized geometries of 1LG and 2LG at B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p), and MP2(full)/6-311++G(d,p) levels revealed that negative charge delocalization in carbonate anions to all three oxygen atoms occurs due to negative hyperconjugation. Phenyl carbonate (1LG) is a better leaving group (Nf = -0.84 +/- 0.07 in 80% v/v aq EtOH) than methyl carbonate 2LG (Nf = -1.84 +/- 0.07 in 80% v/v aq EtOH) because of more pronounced negative hyperconjugation, which is characterized with a more elongated RO-C bond and more increased RO-C-CO angle in 1LG than in 2LG. Calculated affinities of benzhydryl cation toward methyl and phenyl carbonate anions (DeltaDeltaEaff = 11.7 kcal/mol at the B3LYP/6-311++G(d,p) level and DeltaDeltaEaff = 2.7 kcal/mol at the PCM-B3LYP/6-311++G(d,p) level in methanol, respectively) showed that 1LG is more stabilized than 2LG, which is in accordance with greater solvolytic reactivity of 1 than 2.  相似文献   

6.
类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应   总被引:1,自引:0,他引:1  
采用DFT B3LYP和QCISD方法研究了类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应. 在B3LYP/6- 311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=SiLiBr与HF, H2O或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为148.62, 164.42和165.07 kJ•mol-1, 反应热分别为-69.63, -43.02和-28.27 kJ•mol-1. 相同条件下发生插入反应时, 反应活性都是H—F>H—OH>H—NH2.  相似文献   

7.
The mechanism of addition of linear methanol associates (monomer, dimer, trimer) to aryl isocyanates at their C=N and C=O bonds was investigated applying the quantum-chemical method B3LYP/6-311++G(df,p). Notwithstanding the electronic character of substituents in the aromatic ring of the isocyanates all reactions proceed through concerted asymmetric late transition states. The addition to the C=N bond is considerably more preferable than to the C=O bond. In the transformations under consideration the intermolecular donor-acceptor interactions between the reagents result in the appearance of abnormal selectivity.  相似文献   

8.
采用DFT B3LYP和QCISD方法研究了不饱和类锗烯H2C=GeLiCl与RH(R=F, OH, NH2)的插入反应. 在B3LYP/6-311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=GeLiCl与HF、H2O 或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为173.53、194.48和209.05 kJ·mol-1, 反应热分别为60.18、72.93和75.34 kJ·mol-1. 相同条件下发生插入反应时, 反应活性顺序都是H—F>H—OH>H—NH2.  相似文献   

9.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

10.
周晓国  李江  俞书勤  马兴孝 《化学学报》2002,60(11):1909-1914
利用B3LYP理论研究了N(~4S)+CH_3X(X = H, F, Cl)反应体系的直接氢抽提过 程,分别得到了各反应物、产物和过渡态的优化构型和谐振频率。同时应用了6- 31G(d), 6-311+G(d,p)和6-311+ + G(2d,2p)基组,考察其大小对反应体系中各物 种构型及能量的影响。理论计算表明,随着基组的增加,反应势垒逐渐降低,反应 吸热减少。对比取代甲烷的情形,结果表明反应过程中卤素原子具有典型的诱导效 应,降低了抽提势垒。  相似文献   

11.
Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.  相似文献   

12.
The mechanisms of the reactions of methyl isocyanate with phenol monomer and linear dimer were studied at the B3LYP/6-311++G(df,p) level of theory, and the results were compared with those obtained for the reactions with methanol associates. All the examined reactions involve asymmetric concerted transition states. The addition of phenol is electrophilic, whereas the addition of methanol is nucleophilic. The formation of H-complexes with phenol and methanol molecules increases not only electron-donating power but also gasphase acidity and basicity.  相似文献   

13.
A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.  相似文献   

14.
Two intramolecularly donor-stabilized silenes, 1-(8-dimethylamino-1-naphthyl)-1,2,2-tris(trimethylsilyl)silene (6a) and 1-(2-dimethylaminomethylphenyl)-1,2,2-tris(trimethylsilyl)silene (6b), were synthesized according to a novel one-step process by the reaction of (dichloromethyl)tris(trimethylsilyl)silane (1) with a twofold molar excess of 8-dimethylamino-1-naphthyllithium or 2-(dimethylaminomethyl)phenyllithium, respectively. Compounds 6a and 6b are thermally stable compounds. X-ray structural analyses of both silenes revealed strong donor-acceptor interactions between the dialkylamino groups and the electrophilic silene silicon atoms (Si-N distances: 6a: 1.751(3) A; 6b: 1.749(3) A) that lead to pyramidalization at the silicon centers. In contrast, the configuration at the silene carbon atoms was found to be planar. The Si=C distances (6a: 1.751(3) A; 6b: 1.749(3) A) fit with literature data of comparable compounds. Addition of water or methanol to the Si=C bonds of 6a,b afforded the silanols 7a,b and the methoxysilanes 8a,b, respectively. The compound 1-(8-dimethylaminomethyl-1-naphthyl)-1,2,2-tris(trimethylsilyl)silene (6c), generated following the same procedure by the reaction of 1 with 8-(dimethylaminomethyl)-1-naphthyllithium (molar ratio 1:2) proved to be unstable at room temperature and underwent rapid insertion of the Si=C group into a methylene C-H bond of the dimethylaminomethylnaphthyl ligand to afford the 1-silaacenaphthene 9.  相似文献   

15.
过氧亚硝酸与苯酚的反应机理理论研究   总被引:3,自引:0,他引:3  
采用量子化学密度泛函理论(DFT)研究了过氧亚硝酸分解产生的自由基(•OH和•NO2)与苯酚的反应机理. 在B3LYP/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上对该反应体系的反应物、中间体、过渡态及产物进行了几何构型优化并计算了振动频率和能量. 计算结果表明, 过氧亚硝酸与苯酚的反应生成两种主要产物, 分别为邻羟基苯酚和对羟基苯酚, 这一结论与实验结果一致. 此外在同一计算水平上采用SCRF(PCM)方法计算了溶剂化效应, 结果表明, 极性溶剂可以降低各反应通道的活化能, 有利于反应的进行.  相似文献   

16.
The molecular structures, the energies of complex formation, and the vibrational spectra of the binary molecular complexes of SiF4 with water, methanol, and dimethyl ether were calculated by the ab initio MP2 method with the basis sets up to 6-311++G(2d,2p). In the complexes, which have been detected previously by IR spectroscopy in low-temperature (12—15 K) inert matrices, the five-coordinate Si atom is in a distorted trigonal-bipyramidal environment, which is formed through the donor-acceptor interaction of the O atom with the Si atom and is additionally stabilized by the H...F hydrogen bonds.  相似文献   

17.
The mechanism of the oxide extraction reaction between singlet silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide has been investigated with density functional theory, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps, the first step is the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; the second step is the INT then generates a product via a transition state (TS). This kind reaction has similar mechanism, when the silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide close to each other, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Si = C: gives a p → p donor–acceptor bond, thereby leading to the formation of INT. As the p → p donor–acceptor bond continues to strengthen (that is, the C? O bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity, which mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Addition of linear methanol associates at the C=N and C=O bonds of methyl isocyanate was studied in terms of the B3LYP/6-311++G(df,p) hybrid quantum-chemical method. The addition at the C=N bond is more favorable than the reaction at the carbonyl group. All reactions involve late asymmetric cyclic transition states. The activity of the reacting system increases in parallel with the degree of methanol association. Isomerization of methyl hydrogen methylcarbonimidate into carbamate is catalyzed by methanol associates. Thermal decomposition of carbamates with formation of isocyanates can occur in autocatalytic mode.  相似文献   

19.
The reaction mechanism of the hemiacetal formation from formaldehyde and methanol has been studied theoretically at the B3LYP/6-311++G(d,p) level. In addition to the study of the reaction between the isolated reactants, three different kinds of catalysis have been explored. The first one examines the use of assistants, especially bridging water molecules, in the proton transfer process. The second one attempts to increase the local electrophilicity of the carbon atom in formaldehyde with the presence of a Br?nsted acid (H(+) or H(3)O(+)). The last one considers the combined effect of both catalytic strategies. The reaction force, the electronic chemical potential, and the reaction electronic flux have been characterized for the reaction path in each case. In general, it has been found that structural rearrangements represent an important energetic penalty during the activation process. The barriers for the reactions catalyzed by Br?nsted acids show a high percentage of electronic reorganization contribution. The catalytic effects for the reactions assisted by water molecules are due to a reduction of the strain in the transition state structures. The reaction that includes both acid catalysis and proton assistance transfer shows the lowest energy barrier (25.0 kJ mol(-1)).  相似文献   

20.
We have performed density functional cluster model calculations to explore the mechanism and regioselectivity for the reactions of propylene oxide with X(100)-2x1 surfaces (X = C, Si, and Ge). The computations reveal the following: (i) the reactions on Si(100) and Ge(100) are barrierless and highly exothermic; (ii) the reactions on X(100) (X = Si and Ge) are initiated by the formation of a dative-bonded precursor state followed by regioselective cleavage of the C2-O bond (C2 directly connected to the methyl-substituent) in propylene oxide, giving rise to a five-membered ring surface species; and (iii) the reaction on C(100), although highly exothermic, requires a large activation energy and would be kinetically forbidden at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号