首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Ni(II) coordination polymers, [Ni(dmbbbi)(pic)2·3H2O] n (1) and [Ni(dmbbbi)1.5(pdc)·2H2O] n (2) (dmbbbi = 1,1′-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), Hpic = 2-picolinic acid, H2pdc = pyridine-2,6-dicarboxylic acid), have been hydrothermally synthesized by self-assembly of nickel chloride with a flexible bis(5,6-dimethylbenzimidazole) ligand and two different pyridine carboxylic acids. The compounds were characterized by physico-chemical and spectroscopic methods and by single-crystal diffraction. Compound 1 possesses 1D ribbon-like chains connected by dmbbbi ligands in bis-bridging mode, which are further extended into a 2D supramolecular network through O–H···O hydrogen bonding interactions between pic anions and lattice water molecules, giving a novel trinodal (3,3,4)-connected topology with the point symbol of (4.6.8)2(6.84.10). Compound 2 shows a 2D undulant {63} hexagonal (hcb) network. The structures of the two complexes are further stabilized by intramolecular π···π stacking interactions between the imidazole and N-containing nickel chelate rings. In addition, the fluorescence properties of 1 and 2 have been investigated in the solid state.  相似文献   

2.
Two new coordination polymers, formulated as [Co(L1)(btec)0.5] n (1) and {[Co(L2)(bdc)]·H2O} n (2) (L1 = 1,3-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2bdc = 1,3-benzenedicarboxylic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,3-bis(benzimidazol-1-ylmethyl)benzene), have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction. The cobalt atoms present different environments, with a trigonal pyramidal geometry in 1 and a distorted octahedral configuration in 2. Complex 1 shows a 2D (4,4) network linked by L1 and btec4? anions, giving an uninodal 4-connected sql topology with a point symbol of {42·62}, while complex 2 displays a 1D ladder-like chain structure, which is further assembled into a 3D supramolecular architecture via C–H···π hydrogen bonding interactions. The fluorescence properties of both complexes have been investigated in the solid state.  相似文献   

3.
Two coordination polymers, [Co(L1)(IPA] n (1) and {[Ag(L2)(HMIPA)]·H2O} n (2) (H2IPA = isophthalic acid, L1 = 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2MIPA = 5-methylisophthalic acid, L2 = 1,6-bis(5,6-dimethylbenzimidazol-1-yl)hexane, have been synthesized and characterized by physicochemical and spectroscopic methods, as well as single-crystal X-ray diffraction. In 1, six-coordinated cobalt centers are bridged by L1 and IPA2? ligands to generate a (4,4) two-dimensional layer. However, complex 2 features a 1D chain structure, which is further extended by O–H···O hydrogen bonding interactions into a 2D supramolecular layer with (63) topology. The fluorescence and thermal gravimetric analysis of both complexes were also explored. Furthermore, the complexes 1 and 2 exhibit remarkable catalytic properties for the degradation of methyl orange dyes in a Fenton-like process.  相似文献   

4.
Two cobalt(II) metal–organic frameworks constructed from 1,2,4,5-benzenetetracarboxylic acid and flexible bis(5,6-dimethylbenzimidazole) ligands, namely {[Co1.5(Hbtec)(L1)1.5(H2O)2]·(H2O)} n and {[Co(H2btec)(L2)]·(L2)0.5(H2O)2} n [L1 = 1,4-bis(5,6-dimethylbenzimidazole-1-ylmethyl)benzene, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,4-bis(5,6-dimethylbenzimidazole)butane], have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods and by single-crystal X-ray diffraction. The cobalt atoms present different coordination environments, with trigonal-bipyramidal and octahedral geometries in 1, and a tetrahedral geometry in 2. Complex 1 has a 2D (6,3) wave like layer structure, which is further linked by hydrogen bonding to generate a 3D supramolecular architecture. It is a trinodal (4,4,4)-connected topology with a point symbol of {42·6·83}2{42·62·82}{43·63}2. Complex 2 is a 2D (6,3) honeycomb net, further linked into a 3D supramolecular network via two modes of ππ stacking interactions. The degradation of methyl orange in a Fenton-like process using complexes 1 and 2 as catalysts has been investigated.  相似文献   

5.
Two ternary mixed Mn(II) coordination polymers (CPs), namely [Mn(L1)(Hnip)2] n (1) and [Mn(H0.5L2)2(H1.5btc)2] n (2) (H2nip = 5-nitroisophthalic acid, L1 = 1, 4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H3btc = 1,3,5-benzenetricarboxylic acid, L2 = 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl), have been synthesized under hydrothermal conditions and structurally characterized. CP 1 exhibits a non-interpenetrated six-connected pcu framework with the point symbol {412·63}, while CP 2 features a metal-carboxylate loop-like chain, which is further assembled into a 3D supramolecular network via hydrogen bonds and ππ interactions. The thermal stabilities, luminescence, and catalytic properties of both CPs for the degradation of methyl orange in a Fenton-like reaction have also been investigated.  相似文献   

6.
Three coordination polymers, namely {[Ni(L1)(nip)(H2O)]·2H2O} n (1), [Co(L2)(tbip)] n (2), and {[Co2(L3)2(bptc)]·3H2O} n (3) (L1 = 1,4-bis(5,6-dimethylbenzimidazole)butane, L2 = 1,4-bis(5,6-dimethylbenzimidazole)-2-butylene, L3 = 1,3-bis(5,6-dimethylbenzimidazole)propane, H2nip = 5-nitro-isophthalic acid, H2tbip = 5-tert-butyl-isophthalic acid, H4bptc = biphenyl-3,3′,4,4′-tetracarboxylic acid), have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Complexes 1 and 2 both feature a two-dimensional (4,4) layer with (44 × 62) topology. Complex 3 possesses a uninodal 4-connected 2D htb network. The fluorescence spectra and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate in a Fenton-like process are reported.  相似文献   

7.
Two metal–organic coordination polymers, {Co(bbbi)0.5(bm)(Hbtc)} n (1) and {Ag2(bbbi)2(ntp)(H2O)·4H2O} n (2), [bbbi = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, bm = benzimidazole, H3btc = 1,2,4-trimellitic acid, and H2ntp = 2-nitroterephthalic acid], have been hydrothermally synthesized and characterized by physico-chemical and spectroscopic methods and single-crystal diffraction. 1 Features a 1D ladder-like chain and is further connected by O–H···O hydrogen bonding interactions to yield a 3D supramolecular architecture. 2 Possesses a 1D infinite zigzag chain connected by bbbi ligands in bis-monodentate mode, which is further extended into a 3D complicated supramolecular network by face-to-face ππ stacking interactions and O–H···O hydrogen bonds. Moreover, both compounds exhibit catalytic properties on degradation of methyl orange in Fenton-like process.  相似文献   

8.
Two new dinuclear copper(II) complexes, Cu2(L1)4(mal)2(H2O)2 (1) (L1 = 5,6-dimethylbenzimidazole, mal = malonate), Cu2(L2)2(pydca)2·4H2O (2) (L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, pydca = pyridine-2,6-dicarboxylate) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The Cu(II) atoms in 1 and 2 both have square pyramidal coordination geometry. In 1, the two similar mononuclear structures are linked by π–π stacking as well as multiple hydrogen bonding interactions to generate a 2D supramolecular layer, while complex 2 is connected with two different patterns of π–π stacking and hydrogen bonding interactions into a 3D supramolecular network. The catalytic activities of 1 and 2 for the degradation of Congo red have been investigated.  相似文献   

9.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

10.
(E)-11H-Bisbenzo[a]fluorenylidene (E-6) was synthesized by Barton’s double extrusion diazo-thione coupling method from 11H-benzo[a]fluoren-11-thione (11) and 11-diazo-11H-benzo[a]fluorene (13). The reaction is probably thermodynamically controlled; in the event that the less stable Z -6 is also formed, it would rapidly undergo Z → E diastereomerization to give E -6. The B3LYP/6-311G(d,p) calculated diastereomerization barrier for Z -6 → E -6 is ΔG 298 = 57.0 kJ/mol (13.6 kcal/mol). The calculated equilibrium constant K eq(E -6 → Z -6) = 92:8 (at 298 K) is indicative of a marked diastereoselectivity of the reaction leading to E -6. The structure of E-6 was established by 1H-NMR and 13C-NMR spectroscopies and by X-ray analysis. PAE E-6 crystallizes in the monoclinic space group C2/c. The unit cell of the crystal structure E -6 contains eight molecules, arranged as four pairs of enantiomers. PAE E -6 adopts a twisted conformation with the pure twist of the central C11=C11′ bond ω = 39°. The dihedral angle ν in E -6 is 60.6°, which is significantly higher than the respective dihedral angle in PAEs Z -6, 2, E -7, Z -7, 14, and 15. The large syn-pyramidalization angles at C11 and C11′ (χ = 12.6° and 14.8°) of E-6 indicates the enhanced strain in the fjord regions of the molecule. The enhanced twist is primarily attributed to the double benzo[a]annelation of the bifluorenylidene moiety at the fjord regions. The B3LYP/6-311G(d,p) calculated structure of E -6 is in a very good agreement with the experimental X-ray structure. PAE E -6 adopts a twisted conformation in solution, with the downfield chemical shift of H1/H1′ (8.31 ppm); H10/H10′ (δ = 7.20 ppm) and H9/H9′ (δ = 6.86 ppm) in E -6 are positioned above the planes of the opposing naphthalene rings. PAEs E -6 and Z -6 are significantly higher in energy than their corresponding benzo[b]annelated isomers E -7 and Z -7.  相似文献   

11.
Two ternary cobalt(II) coordination polymers (CPs), namely [Co(L1)(npht)] n (1) and {[Co2(L2)2(npht)2(H2O)]·H2O} n (2) (L1 = 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl, L2 = 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, and H2npht = 4-nitrophthalic acid) have been synthesized and structurally characterized by X-ray crystallography. Both CPs feature similar 1D infinite chains containing two distinct loops. CP 1 further forms a 3D supramolecular network via weak C–H···O hydrogen bond interactions. CP 2 shows a 1D two-layer chain structure, assembled through ππ stacking interactions. The electrochemical, luminescence, and photocatalytic activities of the two CPs for the removal of methylene blue under visible or UV light were investigated. Possible photocatalytic mechanisms are discussed.  相似文献   

12.
The reactions of N-(2(diphenylphosphino) benzylidene) (phenyl) methanamine, Ph2PPhNHCH2-C5H4N, 1 and N-(2-(diphenylphosphino) (benzylidene) (thiophen-2-yl) methanamine, Ph2PPhNHCH2-C4H3S, 2 with MCl2(cod) and MCl(cod)Me (M = Pd, Pt; cod = 1,5-cyclooctadiene) yield the new complexes [M(Ph2PPhNHCH2-C5H4N)Cl2], M = Pd1a, Pt1b, [M(Ph2PPhNHCH2-C5H4N)ClMe], M = Pd1c, Pt 1d, [M(Ph2PPhNHCH2-C4H3S)Cl2], M = Pd2a, Pt 2b, and [M(Ph2PPhNHCH2-C4H3S)ClMe], M = Pd2c, Pt 2d, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P-, 1H-NMR, IR spectroscopy, electro spray ionization-mass spectrometry (ESI-MS) and elemental analysis. The representative solid-state molecular structures of the platinum complexes 1b and 2b were determined using single crystal X-ray diffraction analysis and revealed that the complexes exhibit a slightly distorted square-planar geometry. Furthermore, the palladium complexes were tested as potential catalysts in the Heck and Suzuki cross-coupling reactions.  相似文献   

13.
Two new metal–organic coordination polymers {[Co(L1)(nip)]·H2O} n (1) and [Co(L2)(ip)] n (2) (H2ip = isophthalic acid, L1 = 1,3-bis(benzimidazol-1-ylmethyl)benzene, L2 = 1,4-bis(5-methylbenzimidazol-1-ylmethyl)benzene, H2nip = 5-nitroisophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction analysis. The analysis reveals that complex 1 has a 1D double chain structure connected by L1 and nip2? ligands, which is further assembled into a 3D bbf (moganite network) supermolecular framework via two types of C–H···O hydrogen bond interactions. Complex 2 possesses a 3D MOF with a four-connected cds (CdSO4 network) topology. The fluorescence and catalytic properties of the complexes for the degradation of Congo red have been investigated.  相似文献   

14.
Three Co(II) coordination polymers, namely, {Co(btbb)0.5(ndc)(H2O)}n (1), {[Co(btbb)(bpdc)]·1.5H2O}n (2), and {[Co(btbp)2(3-npa)]·2H2O}n (3) (btbb = 1,4-bis(thiabendazole)butane, btbp = 1,3-bis(thiabendazole)propane, H2ndc = 2,6-naphthalenedicarboxylic acid, H2bpdc = 4,4′-biphenyldicarboxylic acid and 3-H2npa = 3-nitro phthalic acid) were synthesized under hydrothermal conditions. Their X-ray crystal structures show that complexes 1 and 2 both have 2D uninodal 3-connected hcb (honeycomb) structures. Complex 1 is further extended into a threefold interpenetrating 3D 4,4-connected mog (moganite) supramolecular architecture with the point symbol of {4.64.8}2{42.62.82} by O–H···O hydrogen bonding interactions. Complex 2 shows a 3D supramolecular framework involving π···π stacking interactions. Complex 3 features a uninuclear structure, which is further assembled into an ordered 2D hydrogen-bonded-driven pattern with O–H···O and O–H···N hydrogen bonding interactions. The fluorescence spectra and photocatalytic properties of complexes 13 for degradation of methyl orange were investigated.  相似文献   

15.
Three bis-triazole-bis-amide-based copper(II) complexes with different dimensionality, [Cu(dtcd)2 (1,3-HBDC)2]·2H2O (1), [Cu(dtcd) (1,3,5-H2BTC)2]·2H2O (2) and [Cu4(μ 3-OH)2(dtcd)2(SIP)2]·4H2O (3) (dtcd = N,N′-di(4H-1,2,4-triazole) cyclohexane-1,4-dicarboxamide, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, NaH2SIP = sodium 5-sulfoisophthalate), have been synthesized under different pH values and structurally characterized. Complex 1 exhibits a zero-dimensional mononuclear structure with one carboxyl group of 1,3-HBDC coordinating to copper(II), while the other carboxyl group is protonated. In complex 2, the CuII ions are bridged by the dtcd ligands forming a one-dimensional chain, in which only one carboxyl group of 1,3,5-H2BTC coordinates with the metal, while the others are protonated. Complex 3 possesses a two-dimensional network based on tetranuclear Cu4 clusters supported by the dtcd and nonprotonated SIP ligands. The various structures clearly indicate that the pH and polycarboxylates have a great influence on the dimensionality and structures of 13. The luminescence properties of 13 and magnetic properties of 3 were investigated.  相似文献   

16.
The copper aminotropones Cu[ON(R′)C7H4R-4]2 [R = H, R′ = Me (13), Et (14), n-Pr (15), n-Bu (16), Bz (17), MenOCH2CH2 (20); R = i-Pr, R′ = Me (18), n-Pr (19), MenOCH2CH2 (21)] have been prepared from the corresponding aminotropones HN(R′)OC7H4R-4 (17) by reacting with copper(II) acetate in aqueous ethanol. 20, 21 contain the flavourant, menthol, as part of the ligand. The structures of 5 (R = H, R′ = Bz), a hydrogen-bonded dimer, 14 and 20, both incorporating square-planar, four-coordinate copper centres, have been determined by X-ray crystallography. The antibacterial activities of complexes 13, 17, 20 and 21 have been assayed against Staphylococcus waneri, an in vitro model of plaque inhibition effects, and found to be more active than a commercial toothpaste formulation, but less active than the O,O-chelated copper(II) complex of ethylmaltol.  相似文献   

17.
Three new silver coordination compounds with empirical formula [Ag2(L1)2·(ntp)·(H2O)3.25]n (1), [Ag1.5(L1)1.5·(H0.5bdc)·(H2O)4]n (2) and [Ag(L2)(Hmip)]n (3) (L1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L2 = 1,1′-(1,4-butanediyl)bis-1H-benzimidazole, H2ntp = 2-nitroterephthalic acid, H2bdc = 1,3-benzenedicarboxylic acid, H2mip = 5-methylisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and physico-chemical spectroscopic methods. The silver centers display different environments with a linear geometry in 1 and 2 and distorted T-shaped geometry in 3. In 1–3, the bidentate N-donor ligands (L1 and L2) bridge neighboring silver centers to form 1D infinite chain structures. Complexes 2 and 3 are extended into 2D layers, and 1 is packed into a 3D 3,4,4,6-connected supermolecular network via classical O–H···O hydrogen bonds, while 3 is further extended into 3D framework through π–π interactions. The luminescence properties of complexes 1, 2 and 3 were investigated in the solid state. These coordination polymers possess a remarkable activity for degradation of methyl orange by persulfate in a Fenton-like process.  相似文献   

18.
A new Schiff base complex [Ni(H2L1)(NO3)](NO3) (1) (H2L1 = 3-[N,N′-bis-2-(5-bromo-3-(morpholinomethyl) salicylideneamino) ethyl amine]) was synthesized from reaction of the ditopic ligand H2L1 with Ni(NO3)2 in anhydrous MeOH. Complex 1 is stable in the solid state, but prone to hydrolysis. Recrystallization of 1 from wet MeOH led to the isolation of a novel unsymmetrical complex [Ni(HL2)(NO3)](NO3) (2) (HL2 = 2-[(2-(2-aminoethylamino) ethylimino) ethyl)-5-bromo-3-(morpholino methyl) salicylidene amine]). X-ray single-crystal analysis of complex 2 showed that complex 1 had undergone partial decomposition of one imine bond. In contrast, the Schiff base complex [Ni(HL3)](NO3) (3) (H2L3 = N,N′-bis(5-methyl-salicylidene) diethylenetriamine) was stable in wet methanol, and the single-crystal structure of 3 showed that the Ni(II) center was coordinated in an unsymmetrical square planar geometry. Density functional theory calculations were performed in order to obtain a geometry-optimized model of complex 1, in which the Ni(II) center was coordinated in a similar manner as that in complex 3. The thermodynamic parameters were calculated, in order to rationalize the difference in hydrolytic reactivity between complexes 1 and 3.  相似文献   

19.
A glycol ether modified precursor, [Nb{O(CH2CH2O)2}(OPri)3] (A) was prepared by the reaction of Nb(OPri)5 with O(CH2CH2OH)2 in 1:1 molar ratio in anhydrous benzene. Further reactions of A with a variety of internally functionalized oximes in different molar ratios, yielded heteroleptic complexes of the type, [Nb{O(CH2CH2O)2}(OPri)3?n{ON = C(CH3)(Ar)}n] (1–9) {where Ar = C4H3O-2, n = 1 [1], n = 2 [2], n = 3 [3]; C4H3S-2, n = 1 [4], n = 2 [5], n = 3 [6]; C5H4N-2, n = 1 [7], n = 2 [8], n = 3 [9]}. All the above derivatives have been characterized by elemental analyses, FT-IR, NMR (1H, 13C {1H}) and FAB mass studies. Spectral studies of 1–9 suggest the presence of mono- and bi-dentate mode of oxime moieties, in the solution and in the solid states, respectively. FAB mass studies indicate monomeric nature for 3 and dimeric nature for A. TG curves of A and 6 show their low thermal stability. Soft transformation of A and 3 to pure niobia, a and b, respectively have been carried out by sol–gel technique. The XRD patterns of niobia a and b suggest the formation of nano-size crystallites of average size of 10.8 and 19.5 nm, respectively. The XRD patterns also indicate the formation of monoclinic phase of the niobia in both the cases. Absorption spectra of a and b suggest energy band gaps of 4.95 and 4.39 eV, respectively.  相似文献   

20.
Three new Co(II) coordination polymers, [Co(L1)(bpdc)] n (1), [Co(L2)(ndc)(H2O)·2H2O] n (2) and [Co(L3)(ndc)(H2O)·H2O] n (3) (L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2bpdc = 4,4′-biphenyldicarboxylic acid, H2ndc = 2,6-naphthalenedicarboxylic acid) have been synthesized under hydrothermal conditions and structurally characterized by X-ray crystallography. All three complexes feature (4,4) networks that extend into 3D supramolecular frameworks via hydrogen bonding interactions. The luminescence properties and catalytic activities of these complexes with respect to the degradation of methyl orange in a Fenton-like process have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号