首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
通过溶胶.凝胶法制备了层状钙钛矿结构的K2La2Ti3O10及硼族元素掺杂的K2La2Ti3O10,采用X-射线衍射(XRD)、紫外可见漫反射光谱(DRS)等对K2La2Ti3O10及硼族元素掺杂K2La2Ti3O10进行表征.以I-为电子给体、分别在紫外和可见光辐射下研究了K2La2Ti3O10及硼族元素掺杂K2La2Ti3O10光催化分解水的产氢活性;采用第一性原理,计算了硼族元素掺杂对K2La2Ti3O10半导体能带结构和态密度的影响.从电子结构的变化揭示了掺杂引起光催化活性差异的原因.研究结果表明,硼族元素的掺入能够改善和提高K2La2Ti3O10的光解水产氢活性;在B,Al,Ga,In与Ti的物质的量的比为0.01:1的情况下,K2La2Ti3O10紫外光催化分解水产氢速率分别为151.7、119.6、155和119.2 umol·L-1·h-1,比K2La2Ti3O10掺杂改性前产氢速率分别提高了166%、110%、172%和109%,可见光分解水的产氢速率为67.0、60.5、55.0和50.0umol·L-1·h-1,分别为K2La2Ti3O10掺杂改性前产氢速率的4、3.7、3.3和3倍.  相似文献   

2.
Ce掺杂K_2La_2Ti_3O_(10)催化剂的可见光高效催化制氢的研究   总被引:1,自引:0,他引:1  
采用高温固相法合成了铈掺杂的K2La2Ti3O10催化剂,利用X射线衍射(XRD)、紫外-可见漫反射(UV-visDRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征.考察了催化剂的可见光催化分解甲醇水溶液制氢的活性,并对可见光催化机理进行了分析.研究表明,铈的掺杂没有改变K2La2Ti3O10的微晶结构,并使催化剂粒径有所减小.紫外可见漫反射分析表明禁带宽度为2.3eV左右,对可见光具有较高吸收.XPS表明La和Ti为+3和+4价,而Ce则是+3和+4的混合价态.担载2wt%Pt后,在可见光下光催化活性大大提高,当铈的掺杂量为0.5mol%(即Ce取代La的摩尔百分量)时,光催化活性达到最大,产氢速率为0.05mmol/h;光照5h后产氢量为0.22mmol,而纯K2La2Ti3O10的产氢量只有0.037mmol.  相似文献   

3.
采用溶胶-凝胶法制备了Fe3+掺杂的Fe-K2La2Ti3O10.光催化剂,并通过X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析,考察了不同掺杂量对K2La2Ti3O10的性质及光催化分解水制氢活性的影响.结果表明,Fe-K2La2Ti3O10.在400-650 nm范围内显示强吸收,光谱响应扩展到可见光区(λ>400 nm),掺杂Fe3+后,K2La2Ti3O10.的可见光区的光催化制氢活性显著提高,掺杂量为nPe/nn=0.04时活性最佳,当催化剂用量为0.1 g,反应液为CH3OH(30 mL)+H2O(90 mL)时,产氢量达到1.92 μmol·h-1,为未掺杂时的4倍.  相似文献   

4.
采用溶胶-凝胶法制备了Fe3+掺杂的Fe-K2La2Ti3O10光催化剂, 并通过X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析, 考察了不同掺杂量对K2La2Ti3O10的性质及光催化分解水制氢活性的影响. 结果表明, Fe-K2La2Ti3O10在400-650 nm范围内显示强吸收, 光谱响应扩展到可见光区(λ>400 nm), 掺杂Fe3+后, K2La2Ti3O10的可见光区的光催化制氢活性显著提高, 掺杂量为nFe/nTi=0.04时活性最佳, 当催化剂用量为0.1 g, 反应液为CH3OH(30 mL)+H2O(90 mL)时, 产氢量达到1.92 μmol·h-1, 为未掺杂时的4倍.  相似文献   

5.
TiO2/石墨烯复合材料的合成及光催化分解水产氢活性   总被引:1,自引:0,他引:1  
利用石墨粉根据Hummers氧化法制得氧化石墨,并进一步还原得到石墨烯。采用溶胶-凝胶法以钛酸四丁酯和石墨烯为起始材料制备了二氧化钛(TiO2)和石墨烯的复合光催化材料。研究了该复合材料在紫外-可见光以及可见光条件下的光催化分解水制氢活性。结果表明,紫外-可见光照射下,TiO2/石墨烯复合光催化材料的光催化分解水产氢速率为8.6 μmol·h-1,远大于同条件下商业P25的产氢速率 (4.5 μmol·h-1),光解水产氢活性提高了近2倍;可见光下光照3 h,TiO2/石墨烯复合材料的光催化分解水产氢量约为0.2 μmol。  相似文献   

6.
烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了烧绿石结构的光催化剂La2Ti2-xCoxO7 (x=0, 0.05, 0.10, 0.20), 通过XRD、FT-IR、BET、UV-Vis漫反射光谱等测试手段对催化剂的晶体结构、比表面积以及漫反射光谱进行了表征, 采用光催化反应装置和气相色谱仪对产氢速率进行了测定.研究结果表明, La2Ti2O7只在紫外光下有吸收, 而Co对La2Ti2O7的B位掺杂能使其在可见光区有明显的吸收; La2Ti2O7的Co掺杂不仅提高了其在紫外光照射下分解水制氢的能力, 而且可使其在可见光照射下分解水制氢; 在La2Ti2-xCoxO7(x=0-0.20)系列中, La2Ti1.9Co0.1O7分解水制氢能力最强.  相似文献   

7.
C-N共掺杂纳米TiO2的制备及其光催化制氢活性   总被引:3,自引:0,他引:3  
采用TiCN粉末在空气气氛中不同温度下焙烧制得C-N共掺杂的纳米TiO2光催化剂. 利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及X射线光电子能谱(XPS)等手段对其进行了表征. XRD和XPS结果表明, TiCN中的C和N元素可以被O取代得到C-N共掺杂的TiO2. DRS结果表明, 所制得的C-N共掺杂的TiO2在可见光区域比P25表现出更强的光吸收性能. 以Na2S-Na2SO3体系为牺牲剂, 分别考察了不同温度下焙烧得到的C-N共掺杂的TiO2光催化分解水产氢的活性. 结果表明, 550 ℃焙烧得到的C-N共掺杂的TiO2在紫外光照射下具有最高的光解水产氢活性,产氢速率为41.1 μmol·h-1, 大于P25的光解水产氢活性(26.2 μmol·h-1). 在紫外-可见光照射下, 光解水产氢速率仅为0.2 μmol·h-1, 这可能是由于C-N掺杂引起的可见光范围的吸收对光催化分解水产氢活性的贡献较小.  相似文献   

8.
采用微波辅助通过酸交换、胺柱撑、离子交换等步骤制备了CdS插层的K2La2Ti3O10(记做CdS-K2La2Ti3O10)复合光催化剂.利用X射线粉末衍射(XRD),场发射扫描电子显微镜(SEM),紫外-可见漫反射吸收光谱(UV-Vis)和光致发光光谱(PL)等对产物进行表征,考察了CdS-K2La2Ti3O10在紫外光及可见光下催化制氢活性.结果表明,微波辅助法与传统法制备的插层复合催化剂晶型结构相似,同时大大减少了离子交换反应时间,减少了对层间结构的破坏,拓展了催化剂的可见光吸收范围.微波辅助制备的催化剂在紫外光和可见光照射3 h后的产氢量分别为221.53 mmol/(g cat.)和3.23 mmol/(g cat.),并对光催化机理进行了分析.  相似文献   

9.
刘利  崔文权  邱发礼 《化学学报》2010,68(3):211-216
采用高温固相法合成了铈掺杂的K2La2Ti3O10催化剂, 利用X射线衍射(XRD)、紫外-可见漫反射(UV-vis DRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征. 考察了催化剂的可见光催化分解甲醇水溶液制氢的活性, 并对可见光催化机理进行了分析. 研究表明, 铈的掺杂没有改变K2La2Ti3O10的微晶结构, 并使催化剂粒径有所减小. 紫外可见漫反射分析表明禁带宽度为2.3 eV左右, 对可见光具有较高吸收. XPS表明La和Ti为+3和+4价, 而Ce则是+3和+4的混合价态. 担载2 wt% Pt后, 在可见光下光催化活性大大提高, 当铈的掺杂量为0.5 mol%(即Ce取代La的摩尔百分量)时, 光催化活性达到最大, 产氢速率为0.05 mmol/h; 光照5 h后产氢量为0.22 mmol, 而纯K2La2Ti3O10的产氢量只有0.037 mmol.  相似文献   

10.
采用原位碳热还原法制备了硼掺杂的β-SiC(Bx SiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能.利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征.分析结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄.浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合.因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高.当B/Si的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

11.
Scandium magnesium gallide, Sc2MgGa2, and yttrium magnesium gallide, Y2MgGa2, were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo2FeB2‐type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc2MgGa2 was determined from single‐crystal diffraction intensities and the isostructural Y2MgGa2 was identified from powder diffraction data.  相似文献   

12.
13.
14.
15.
Summary The ability of [MoS4]2–, anions to be used as ligands for transition metal ions has been widely demonstrated, especially with Fe2+. The present study has been restricted to linear complexes such as (NEt4)2 [Cl2FeS2MoS2] and (NEt4)2[Cl2FeS2MoS2FeCl2]. Their electrochemical properties are described: upon electrochemical reduction, these compounds yield MoS2, as a black precipitate, and an iron complex in solution, assumed to be [SFeCl2]2–. The electrochemical reduction goes through two electron transfers, coupled with the breakdown of the molecular skeleton: a DISPl and an ECE mechanism. Depending on the solvent, the following equilibrium may be observed: [Cl4Fe2MoS4]2–[Cl2FeMoS4]2–+FeCl2. The equilibrium constant, KD, was evaluated by differential pulse polarography. KD is tightly related to the donor number of the solvent.  相似文献   

16.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

17.
The structures of the hypophosphites KH2PO2 (potassium hypophosphite), RbH2PO2 (rubidium hypophosphite) and CsH2PO2 (caesium hypophosphite) have been determined by single‐crystal X‐ray diffraction. The structures consist of layers of alkali cations and hypophosphite anions, with the latter bridging four cations within the same layer. The Rb and Cs hypophosphites are isomorphous.  相似文献   

18.
Wu YT  Linden A  Siegel JS 《Organic letters》2005,7(20):4353-4355
[reaction: see text] Fluoranthene 2 and heptacycle 3 are easily accessible from the reaction of diyne 1 and norbornadiene (NBD) in the presence of the rhodium catalyst. The unusual [(2+2)+(2+2)] adduct 3 was confirmed by the X-ray crystal structure analysis.  相似文献   

19.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

20.
Photoionization Mass Spectra of SCl2, S2Cl2, and S2Br2 Photoionization mass spectra of SCl2, S2Cl2, and S2Br2 have been measured. Heats of formation, bond energies, and ionization potentials of fragments have been calculated from appearance potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号