首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of raznozvennost of polymers is one of the important aspects in theoretical considerations of polymer chemistry. This includes the elementary steps of preparing individual polymers and enables one to understand and to specify the interrelation between the structure of polymers and their properties. The purpose of this paper is to consider the causes of the rise of raznozvennost and its influence on the properties of polymers.  相似文献   

2.
Development of several fields of modern engineering has generated a need for the preparation of polymeric materials with working temperatures as high as 300°C. The solution of this problem is largely connected with preparation of new thermally stable polymers. As a consequence, beginning in the middle of the fifties, numerous investigations were carried out in order to obtain new thermally stable macromolecular compounds [1]. These investigations resulted in a considerable number of organo-element [1] and aromatic carbo-chain polymers [1] with a complex of valuable properties; but the chemistry of aromatic polymers containing various heterocycles in the main chains of macromolecules, so-called polyheteroarylenes, has received the most development [1].  相似文献   

3.
Quaternary ammonium salt polymers, a kind of polyelectrolyte with a quaternary ammonium group, are widely used in traditional and emerging industries due to their good water-solubility, adjustable cationicity and molecular weight, high efficiency and nontoxicity. In this paper, firstly, the properties and several synthesis methods of typical quaternary ammonium salt monomers were introduced. Secondly, the research progress on the synthesis of polymers was summarized from the perspective of obtaining products with high molecular weight, narrow molecular weight distribution and high monomer conversion, and special functional polymers. Thirdly, the relationships between the structures and properties of the polymer were analyzed from the perspectives of molecular weight, charge density, structural stability, and microstructural regulation of the polymer chain unit. Fourthly, typical examples of quaternary ammonium salt polymers in the application fields of water treatment, daily chemicals, petroleum exploitation, papermaking, and textile printing and dyeing were listed. Finally, constructive suggestions were put forward on developing quaternary ammonium salt polymers with high molecular weights, strengthening the research on the relationships between the structures and their properties and pinpointing relevant application fields.  相似文献   

4.
In contrast to chemical routes, enzymatic polymerization possesses favorable characteristics of mild reaction conditions, few by‐products, and high activity toward cyclic lactones which make it a promising technique for constructing polymeric materials. Meanwhile, it can avoid the trace residue of metallic catalysts and potential toxicity, and thus exhibits great potential in the biomedical fields. More importantly, lipase‐catalyzed polymer synthesis usually shows favorable enantio‐, regio‐, and chemoselectivity. Here, the history and recent developments in lipase‐catalyzed selective polymerization for constructing polymers with unique structures and properties are highlighted. In particular, the synthesis of polymeric materials which are difficult to prepare in a chemical route and the construction of polymers through the combination of selective enzymatic and chemical methods are focused. In addition, the future direction is proposed especially based on the rapid developments in computational chemistry and protein engineering techniques.  相似文献   

5.
This short review describes the progress which is being made towards the self-assembly of mechanically-linked polymers. A new concept in polymer synthesis - self-assembly - is demonstrated to have the potential to create novel high molecular weight polymers which possess repeat units that do not just consist of a main chain backbone built up of entirely covalent bonds, but are constructed of mechanical linkages comprised of catenane and rotaxane motifs.  相似文献   

6.
The Part and the Whole. The principle of self-organization for the creation of functional units is not an invention of modern natural sciences. It was already a basic idea of the ancient philosophies in Asia and Europe: only the mutuality of the parts creates the whole and its ability to function. Translated into the language of chemistry this means: the self-organization of molecules leads to supramolecular systems and is responsible for their functions. Thermotropic and lyotropic liquid crystals are such functional units, formed by self-organization. As highly oriented systems, they exhibit new properties. The importance of lyotropic liquid crystals for the life sciences has been known for a long time. They are a prerequisite for the development of life and the ability of cells to function. In materials sciences this concept of function through organization led to the development of new liquid-crystalline materials. From the point of view of macromolecular chemistry, this review tries to combine these two different fields and especially hopes to stimulate their interaction and joint treatment. To exemplify this, the molecular architecture of polymeric organized systems will be discussed. Polymeric liquid crystals combine the ability to undergo spontaneous self-organization–typical of liquid-crystalline phases–with the polymer-specific property of stabilizing these ordered states. As new materials, polymeric liquid crystals have already been investigated intensively. As model systems for biomembranes as well as for the simulation of biomembrane processes, they so far have been little discussed. The intention of this review article is to show that polymer science is able to contribute to the simulation of cellular processes such as the stabilization of biomembranes, specific surface recognition, or even the “uncorking” of cells. Polymer science, having an old tradition as an inter-disciplinary field, can no longer restrict itself to common plastics. Attempts to reach new horizons have already begun. The borderland between liquid crystals and cells will certainly play an important role. Basic requirements to work in this frontier area between organic chemistry, membrane biology, life science, and materials science will be the delight in scientific adventures as well as the courage to go ahead. The most important prerequisite will be the willingness to cooperate with disciplines which so far have not really accepted each other. From this point of view, this review does not aim at giving defined answers. It wants instead to encourage the scientific venture: too often we cling to painfully acquired knowledge, fearing adventures.  相似文献   

7.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

8.
Plasma polymerization is a well-established process for the deposition of thin polymeric films on various types of substrates. The potential of this technique for promoting changes of substrate’s wettability constitutes one of the most basic and often reported applications. However, as novel technological demands emerge, and with it the range of available characterizations, plasma polymers are having their niche of applications and properties expanded. The properties of these materials are commonly tailored through the variation of polymer chemistry, postfunctionalization, or other post-treatment processes. That chemical versatility allows the use of plasma polymers in adhesives, water treatment, biomedicine, and many other fields. The creation of nanostructures via lithography or during the deposition process itself constitutes other dynamic fields for new plasma polymer materials. In the current review, the design of materials through plasma polymerization is addressed with the direction given by our expertise in maleic anhydride plasma polymers (MAPP). A non-exhaustive number of applications of plasma polymers is provided to non-specialists as an overview of the materials coming out from the field of this chemical-vapor deposition process. A complete analysis of the literature on maleic anhydride plasma polymers is also performed.  相似文献   

9.
Oligomers belong to the gray area between low molecular weight chemistry and macromolecular chemistry. Although they represent an undesirable “natural impurity” in fiber-forming polycondensates, they serve as useful model compounds for the corresponding polymers in fundamental research. Whereas for many years new classes of oligomers were being made preparatively accessible and the isolation of higher oligomers in pure form was being pursued, at the present time the emphasis is on analysis. By a combination of classical chemical and instrumental methods of analysis from polymer and organic chemistry, the identification of oligomers of unknown structure, the analytical control of their synthesis and the determination of their content in technical polymers has meanwhile become a routine task.  相似文献   

10.
高分子染料的进展   总被引:13,自引:0,他引:13  
高分子染料是一类本身固有颜色的高分子化合物,它兼有染料和高聚物的双重性质。因此既可作为色料也可作为高聚物而应用于许多领域。本文较详细阐述了聚合染料的种类,合成方法及应用情况。  相似文献   

11.
Quality assessments will be important for improved use of recycled polymeric materials. Ongoing preparation of new standards in the area of recycled polymers needs an overview of which properties and thus which polymer characterisation methods that will be important for that purpose. We suggest three polymeric properties as important for this work; these are degree of mixing (composition), degree of degradation and number and amount of low molecular weight compounds (e.g. degradation products, additives, flavour compounds). DSC showed increased degradation as multi modality for LDPE materials obtained from three different sites in a recycling plant. IR demonstrated that the carbonyl index increased during the various steps going from collected material to new product. GC chromatograms obtained for collected film flakes, processed granules and ready-made bags were quite complex with a series of hydrocarbons among other compounds. The recycling process seems, however, to remove some of the low molecular weight compounds found in the incoming dirty material.  相似文献   

12.
Conjugated polymers display unique electronic and optical properties, which favor their use in applications as optoelectronic materials and molecular devices. Despite the recent remarkable progress in the chemistry of conjugated polymers, the synthesis of conjugated polymers containing cyclophane units in the main chain is limited to only a few examples. This Minireview presents recent developments in the synthesis, properties, and applications of through-space conjugated polymers based on cyclophanes.  相似文献   

13.
A series of ferrocene-containing polymeric azines and polymeric Schiff bases have been synthesized by means of acid-catalyzed solution polycondensations. The molecular structures of the polymers synthesized have been determined, and information concerning their thermal behavior has been obtained. Comparative thermal stabilities of the products of polymerization of aliphatic and aromatic diamines with 1,1′-diformylferrocene and 1,1′-diacetylferrocene were investigated by thermogravimetric analysis both in air and in an inert atmosphere. In the inert atmosphere, initial weight loss due to thermal stress did not occur below 300°C in all cases, and in many cases 50–70% residue of polymer sample remained at 700°C. The use of a fluorinated diamine led to the synthesis of a polymer which did not exhibit any significant enhancement of thermal properties. Investigation of the polymer products by direct inlet mass spectroscopy led to the observation that several of the systems contained significant amounts of cyclic dimers, although linear polymers were the major products in most cases. Extraction of the cyclic dimers followed by molecular weight determination by vapor phase osmometry confirmed their molecular structures.  相似文献   

14.
A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).  相似文献   

15.
A ditopic structure containing two heterocyclic DeAP units and programmed to self-assemble is used as an initiation unit for the synthesis of polylactide and polystyrene. The resultant polymers self-assemble into higher molecular weight structures with a lower molecular weight distribution. The largest discrete nanoscale polymeric assembly is proposed to be a hexameric star with a molecular weight of ca. 92.7 kDa. All polymeric assemblies generally exhibit PDI values of 1.3 to 1.5, which are lower than the PDI value of the corresponding polymeric arms. A hexameric assembly is stabilized by 30 hydrogen bonds, including six AADD.DDAA contacts. The hexameric star is formed under conditions that are at least partially controlled by kinetics.  相似文献   

16.
在电场和磁场下手性侧链丙烯酸酯液晶聚合物的行为江雪平金顺子漆宗能张树范(中国科学院化学研究所北京100080)关键词手性侧链丙烯酸酯液晶聚合物,红外二向色性,液晶分子排列含有手性液晶基团的聚合物,分子中含有不对称碳原子,在一定条件下使液晶聚合物...  相似文献   

17.
The condensation of bisketomethylene monomers with either 4,6-dibenzoyl-1,3-phenylenediamine or 2,5-dibenzoyl-1,4-phenylenediamine catalyzed by acid affords high molecular weight polymers containing the anthrazoline and isoanthrazoline units in the polymer main chain. Base is not an effective catalyst for the production of high molecular weight polymer. The phenyl substitution on the anthrazoline and isoanthrazoline units increases the solubility of these polymers over those in which phenyl substitution is absent. The rodlike character of these polymers, which can be altered by positional isomerism in the chain, has an effect on the solution properties.  相似文献   

18.
The present work was aimed at the development of functional polymeric materials to be used in the targeted delivery of proteic drug and tissue engineering fields. The adopted strategy was based on the design of special polymer classes whose structures and functionality could be easily modified by finely tuned synthetic procedures. Poly(ether ester)s containing H-bonding units were chosen as promising materials for the proposed applications. Commercially available precursors were successfully used for the synthesis of symmetrical diesters containing different H-bonding groups (amide, carbamate, and urea moieties). In all cases, pure products were obtained in good yields. Bulk polycondensation of the monomeric precursors with different mixtures of 1,4-butanediol and PEG 1000 diol afforded a variety of high molecular weight polymeric structures. Physical-chemical characterization of the polymers indicates that their thermal, mechanical, and swelling properties can be tailored by a proper selection of the H-bonding group and of the composition of the feed mixture.  相似文献   

19.
共轭高分子材料特异的金属或半导体的电子特性兼有质轻、价廉、易于加工的优点使其在有机场效应晶体管、有机太阳能电池和有机发光二极管等领域显示了重要的应用前景.然而,尽管经过几十年的不断研究,共轭高分子材料种类及其相关器件性能均已得到显著发展,但是共轭高分子材料的本征电荷传输特性仍不清楚,其研究面临巨大挑战,这主要是由共轭高分子材料本身分子量分布弥散、分子间相互缠结以及在常规旋涂薄膜器件中分子高度无序等特性所决定的.从调控共轭高分子聚集态结构的角度出发,不断提高共轭高分子的结构有序性及减小电荷传输过程中的晶界及缺陷密度,是实现共轭高分子材料本征性能认识的有效途径之一.本文首先简单归纳总结了研究者在共轭高分子多尺度聚集态结构调控及性能研究方面的初步结果,进一步结合国内外相关研究进展,重点对共轭高分子晶体方面的工作展开详细介绍,最后对该领域未来发展的挑战及机遇进行了简单评述.  相似文献   

20.
We have developed a microfluidic system for polymerization of amino acid N-carboxyanhydride and compared the properties of the products with those obtained by batchwise system under various experimental conditions. It was found that the microreactor produced polymers with narrower molecular weight distribution compared with polymers obtained by the batchwise system. Also, the molecular mass of the polymer produced using the microreactor was simply governed by the flow (pumping) rate. These results indicated that the microreactor could be a model for synthesis of amino acid polymer with highly controllable average molecular weight and molecular weight distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号