首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assignment of the signals in the 13C and 1H NMR spectra of N-phenyl-2,4-dimethylbuta-1,3-diene-1,4-sultam is difficult for the signal pairs C-2 and C-4, C-1 and C-3, (C-1)? H, (C-2)? CH3 and (C-4)? CH3. The 13C NMR spectrum recorded under gated decoupling conditions provide long-range couplings which make possible an unambiguous assignment of the 13C NMR signal pairs. Application of the 1H CW off-resonance decoupling technique in recording the 13C NMR spectra enables the assignment information from the 13C NMR spectrum to be transferred to the 1H NMR spectrum.  相似文献   

2.
13C NMR at 125.76 MHz with 1H and 2H decoupling, 2H NMR at 76.77 MHz with 1H decoupling, and 1H NMR at 500.14 MHz with 2H decoupling were employed as analytical tools to study the complex mixtures of deuterated ethanes resulting from the catalytic H–D exchange of normal ethane with gas-phase deuterium in the presence of a platinum foil. Reference samples consisting of 1:1 binary mixtures of pure normal ethane and ethane-dn (n=1–6) were used to identify the peak positions in the 13C, 2H, and 1H NMR spectra due to each individual isotopomer, and the effect of isotopic substitution on the chemical shifts was determined in each case. While the NMR of all three nuclei worked well for the identification of the individual components of the 1:1 standard mixtures, both 1H and 2H NMR suffered from inadequate resolution when studying complex reaction mixtures because of the broadening of the lines due to 1H–1H (1H NMR) and 2H–2H (2H NMR) couplings. 13C NMR was therefore determined to be the method of choice for the quantitative analysis of the reaction mixtures. Using the 13C NMR results, a correlation that takes into account the primary and secondary isotope substitution effects on chemical shifts was deduced. This equation was used for the identification of the individual components of the mixtures, and integration of the individual observed resonances was then employed for quantification of their composition. This study shows that 13C NMR with 1H and 2H decoupling is a viable procedure for studying mixtures of deuterated ethanes. Furthermore, the additivity of the isotopic effects on chemical shifts and the transferability of the values obtained with ethane to other molecules makes this approach general for the analysis of other isotopomer mixtures.  相似文献   

3.
Detailed assignments of 1H and 13C NMR spectral data for 14 cyclopentane derivatives are reported. The assignments are based on 1D 1H and 13C NMR and on 2D shift‐correlated [1H, 13C‐HMQC], J‐resolved and NOEDIF experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The 1H NMR data of agrocinopine in D2O solution as extracted from standard 2D NMR experiments, along with 1D 31P and 13C NMR experiments allow to support the trisaccharide structure originally proposed on basis of comparative 13C NMR measurements.  相似文献   

5.
1H, 13C, and 15N NMR chemical shifts for pyridazines 4–22 were measured using 1D and 2D NMR spectroscopic methods including 1H? 1H gDQCOSY, 1H? 13C gHMQC, 1H? 13C gHMBC, and 1H? 15N CIGAR–HMBC experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This study aimed to carry out complete 1H and 13C NMR assignment of 13 protobassic acid saponins, including arganins A–C ( 1 – 3 ) and F ( 4 ), butyrosides B–D ( 5 – 7 ), tieghemelin ( 8 ), 3′-O-glucosyl-arganin C ( 9 ), Mi-saponins A–C ( 10 – 12 ), and mimusopsin ( 13 ), recorded in methanol-d4. This was accomplished by the analysis of high-resolution one-dimensional (1D) NMR (1H and 13C), two-dimensional (2D) NMR (1H–1H COSY, HSQC, and HMBC), and selectively excited 1D TOCSY spectra. Before this study, 1H and 13C NMR data of arganins A–C ( 1 – 3 ) and F ( 4 ) were partially assigned. Our effort leads to their complete assignment, especially the glycon residue, and revises some reported data. Some revisions of the 1H and 13C NMR data in the glycon part of butyroside C ( 6 ), tieghemelin ( 8 ), Mi-saponin A ( 10 ), and mimusopsin ( 13 ) were made. Those data of butyrosides B and D ( 5 & 7 ) and Mi-saponin B ( 11 ), which had not been recorded in methanol-d4, are provided. In addition, the 1H and 13C NMR data of Mi-saponin C ( 12 ) are reported for the first time. These data, being recorded in methanol-d4, should be more friendly for use as a reference for identifying the related triterpenoid saponins.  相似文献   

7.
An NMR study of five highly functionalized and rearranged abietane diterpenoids is described. In addition to 1D NMR methods, including 1D NOESY spectra, 2D shift‐correlated experiments [1H, 13C‐gHSQC‐1J (C,H) and 1H, 13C‐gHMBC‐nJ (C,H) (n = 2 and 3)] were used for the complete and unambiguous 1H and 13C chemical shift assignments of these substances. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The 13C NMR spectra of methyl 2-pyrone-3-, 4-, 5- and 6-carboxylates were studied and the substituent effects on the 2-pyrone ring were compared with those of some model compounds. 1H NMR spectra were also recorded and discussed. The long range 13C, 1H coupling constants were obtained, discussed and proved useful in signal assignments.  相似文献   

9.
Bioactive cage‐like polycyclic compounds have attracted the attention of several research groups because of their unique appearance and their biological activities. Their structures were established on the basis of 1H NMR and 13C NMR spectroscopic data. The 1H and 13C signal assignments and most homonuclear hydrogen coupling constants were assigned by use of techniques such as 1D 1H and 13C NMR and 2D gCOSY, non‐edited gHSQC and gHMBC. The gNOESY experiments proved the endo‐stereochemistry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

11.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   

12.
13C NMR spectra of 24 methyl 2,3-anhydro-4-deoxy-pento and hexopyranosides have been obtained. 1H NMR spectra were also recorded for comparison purposes. The 13C NMR data can be used for differentiation of the stereo-isomeric epoxide configuration. 1H and 13C NMR spectra give some insight, though still of qualitative nature, into conformation of epoxy compounds.  相似文献   

13.
Cyclic acrylates, 2,2- dimethyl-5-methylene-1 , 3-dioxolan-4 -one and 2- phenyl-5-methylene-1,3-dioxolan-4-one, were synthesized successfully. The monomers were characterized by ~1H NMR, ~(13)C NMR, IR and elemental analysis or HRMS. Polymerization of the monomers were carried out at 120℃with di-t-butylperoxide as initiator. The polymers were studied by ~1H NMR, ~(13)C NMR, UV and hydrolysis. The molecular weights of the resulting polymers were estimated by viscosity measurement and the extent of ring opening was estimated also by ~1H NMR and hydrolysis of the polymers and further confirmed by UV spectra.  相似文献   

14.
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Several derivatives of xanthenes are prepared by the condensation of aldehydes and dimedone in H2O in the presence of a catalytic amount of trichlorotriazine. The crystalline products were characterized by FTIR, 1H, and 13C NMR spectra. Density Functional Theory (DFT) calculations on the B3LYP level were used to optimize the geometry and calculate the crystal structure, FTIR, 1H NMR and 13C NMR spectra of the selected synthesized compounds. We found that the values of FTIR, 1H, and 13C NMR spectra obtained by the B3LYP method are in accordance with experimental data. The calculated NICS indicate that the six-membered rings in xanthenes are essentially homoaromatic.  相似文献   

16.
1H and 13C NMR spectral data for diethyl 2‐ and 8‐quinolylmethylphosphonates (L) and their palladium(II) dihalide complexes, trans‐[PdL2X2] (L = 2‐dqmp, 8‐dqmp; X = Cl, Br), are presented. The NMR analysis was performed on the basis of one‐ and two‐dimensional homo‐ and heteronuclear experiments including 1H, 13C, APT, 1H–1H COSY, 1H–13C COSY, HMQC and HMBC techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Data of 1H and 13C NMR spectra show that in 2,2??-bipyridyl, 1-vinyl-2(2??-pyridyl)benzimidazole, 1-vinyl-3-vinylsulfanyl-5-(2-furyl)-1,2,4-triazole, and 1-vinyl-5-vinylsulfanyl-3-(2-furyl)-5-vinylthio-1,2,4-triazole exists a weak intramolecular hydrogen bond between the heterocyclic fragments. It causes a downfield shift of the bridging proton signal in the 1H NMR spectrum by 0.6?C0.7 ppm and an increase in the corresponding direct coupling constant 13C-1H by 1.5?C2.0 Hz. These variations in the spectral parameters can be efficiently used in the conformational analysis for establishing with the use of NMR method which conformers are predominantly populated in the heterocyclic compounds.  相似文献   

18.
Lithocholic acid N-(2-aminoethyl)amide (1) and deoxycholic acid N-(2-aminoethyl)amide(2) have been prepared and characterized by1H, 13C and 15N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd2+-complexes (1+Cd and 2+Cd) in CD3OD solution have been detected by 1H,13C, 15N and 113Cd NMR. The 13C NMR chemical shift assignments of 1 and 2 and their Cd2+-complexes are based on DEPT-135 and z-GS 1H,13C HMQC experiments as well as comparison with the assignments of the related structures. The 15N NMR chemical shiftassignments of the ligands and theirCd2+-complexes are based on z-GS1H,15N HMBC experiments. 13C NMR chemical shift differences between 1and its 1:1 Cd2+-complex based on ab initiocalculations at Hartree-Fock SCI-PCM level using3-21G(d) basis set are in agreement with theexperimental shift changes observed onCd2+-complexation.  相似文献   

19.
The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the 13C indirect dimension enables the distinction of similar compounds exhibiting near‐identical 1H and 13C NMR spectra. It is shown that a complete set of extremely small Δδ(1H) and Δδ(13C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.  相似文献   

20.
The 1H and 13C NMR spectra of d-biotin were observed at 400 and 100 MHz, respectively. Various types of two-dimensional NMR spectroscopy were performed to assign the spectra. The previous assignment of 13C NMR spectrum of d-biotin reported by Bradbury and Johnson was modified, and the dihedral angles between the C? H bonds of the ring were determined. The populations of the conformers produced by internal rotation around the C-2? C-δ bond were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号