首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultraviolet absorption band of a complex between 9-ethyladenine and ∈-caprolactam has been observed at a wavelength longer than that of the absorption band for the 9-ethyladenine monomer. Absorbance values (at 277.5 mμ) of solutions that contained 9-ethyladenine and different concentrations of ∈-caprolactam in cyclohexane were determined at different temperatures. Linear plots were utilized to determine the apparent association constant (K′ ) of the 9-ethyladenine-caprolactam complex over the range of 25° to 60°. The K′ values for the complex of 4-aminopyrimidine and ∈-caprolactam were determined for the same temperature range from the absorbance of cyclohexane solutions at 282.5 mμ. The K' values of the two complexes are the same at 25°, but ∈-caprolactam is more strongly bonded to 9-ethyladenine than to 4-aminopyrimidine at elevated temperatures. The synthesis of 4-amino-1-ethylbenzimidazole hydro-chloride was performed. An attempt to detect a complex between ∈-caprolactam and 4-amino-1-ethylbenzimidazole in a cyclohexane solution was not successful.  相似文献   

2.
?-Caprolactam anionic homopolymerization was studied in the presence of different model activators. On the basis of the results ester- and isocyanate-terminated polymers were used as macroactivators and nylon-6–polyvinyl or polydiene block copolymers were synthesized in high yields. The physical properties and morphology of a nylon–polybutadiene triblock copolymer were characterized.  相似文献   

3.
Phenylphosphonyl-N,N′-biscaprolactam (I) and phenylphosphonyl-N,N′-bis(3,5-dimethylpyrazole) (II) were synthesized and found to be very efficient activators for the anionic polymerization of caprolactam when used in combination with strong bases such as sodium caprolactam. Polymers obtained in the presence of I and II had generally higher molecular weights and were less sensitive to thermal degradation upon molding than those whose preparation entailed the use of N-acetyl-caprolactam (III) as an activator. Thermal behavior and tensile properties indicated that the structure of these polyamides differs from that encountered in nylon 6 prepared with conventional anionic catalyst systems.  相似文献   

4.
Mechanism for polymerization of ε-caprolactam in the presence of both sodium and aluminum caprolactamate was investigated at 171°C. The role of Al(Cap)3 as an initiator was revealed. The apparent rate constant of propagation reaction decreased with the increase in the concentration of Al(Cap)3, as the two different metal salts interact even at 171°C. The activation energy of the overall polymerization reaction with this catalyst system was estimated to be 41.18 kcal/mole.  相似文献   

5.
Polystyrene–nylon 6 and polybutadiene–nylon 6 block copolymers have been prepared from isocyanate-terminated prepolymers. From extraction and fractionation data the products obtained were found to be mixtures of both homopolymers and pure block copolymer. The polybutadiene–nylon 6 copolymers are extremely pliable at ambient temperatures even at high ?-caprolactam contents (70–80 wt-%). This is true even though these copolymers show a crystalline melting point at 213°C similar to poly-?-caprolactam. Presumably this unusual behavior occurs because of the nature of the synthesis which renders the butadiene portion of these copolymers the continuous phase. Plasticity measurements indicate that pliability is dependent on the molecular weight of the block poly-?-caprolactam.  相似文献   

6.
7.
The aluminum alkoxide mediated ring opening polymerization of functional lactones, such as γ‐ethylene ketal‐ϵ‐caprolactone (TOSUO), γ‐(triethylsilyloxy)‐ϵ‐caprolactone (SCL) and γ‐bromo‐ϵ‐caprolactone (γBrCL), is a versatile route to polyesters containing ketal, ketone, alcohol and bromide groups. As result of living polyaddition mechanism, random and block copolymerization of ϵCL and γBrCL has been successfully carried out. The reactivity ratios are quite similar (1.08 for ϵ‐CL, and 1.12 for γBrCL). These random copolymers are semicrystalline when they contain less than 30 mol% of γBrCL, otherwise they are amorphous. No transesterification reaction occurs during the sequential polymerization of ϵ‐CL and γBrCL leading to block copolymers. Reaction of poly(ϵCL‐co‐γBrCL) with pyridine provides quantitatively a polycationic polyester. Furthermore, the reaction of this random copolymer with 1,8‐diazabicyclo[5.4.0] undec‐7‐ene (DBU) is a route to unsaturated polyesters, whose the non conjugated double bonds can be quantitatively converted into epoxides by reaction with m‐chloroperbenzoic acid (mCPBA). No chain degradation is detected during these derivatization reactions of poly(ϵCL‐co‐γBrCL).  相似文献   

8.
Resorbable poly(ester anhydride) networks based on ε‐caprolactone, L ‐lactide, and D,L ‐lactide oligomers were synthesized. The ring‐opening polymerization of the monomers yielded hydroxyl telechelic oligomers, which were end‐functionalized with succinic anhydride and reacted with methacrylic anhydride to yield dimethacrylated oligomers containing anhydride bonds. The degree of substitution, determined by 13C NMR, was over 85% for acid functionalization and over 90% for methacrylation. The crosslinking of the oligomers was carried out thermally with dibenzoyl peroxide at 120 °C, leading to polymer networks with glass‐transition temperatures about 10 °C higher than those of the constituent oligomers. In vitro degradation tests, in a phosphate buffer solution (pH 7.0) at 37 °C, revealed a rapid degradation of the networks. Crosslinked polymers based on lactides exhibited high water absorption and complete mass loss in 4 days. In ε‐caprolactone‐based networks, the length of the constituent oligomer determined the degradation: PCL5‐AH, formed from longer poly(ε‐caprolactone) (PCL) blocks, lost only 40% of its mass in 2 weeks, whereas PCL10‐AH, composed of shorter PCL blocks, completely degraded in 2 days. The degradation of PCL10‐AH showed characteristics of surface erosion, as the dimensions of the specimens decreased steadily and, according to Fourier transform infrared, labile anhydride bonds were still present after 90% mass loss. © 2003 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3788–3797, 2003  相似文献   

9.
A rapid dechlorination method of N-chloro poly(hexamethylene adipamide) and N-chloro poly(ε-caprolactam) to the corresponding polyamides was studied. This method can be used for molecular weight determinations of N-chloro polyamides by viscosimetric measurements. The dechlorination was achieved in formic acid solution by the reaction of N-chloro polyamides with trialkyl phosphites. The reaction was exothermic and vigorous and was applied to a series of products of various degrees of N-chlorination covering the range of 0–100%. No N—Cl was detected by iodimetric titration of the dechlorination products. The dechlorination of N-chloro polyamides was demonstrated by infrared (IR) spectroscopy. No significant molecular weight reduction except that taking place in the N-chlorination reaction of poly(hexamethylene adipamide) was observed.  相似文献   

10.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

11.
12.
The miscibility of poly (?-caprolactone) (PCL) with poly (styrene-co-acrylic acid) (SAA) and of poly (styrene-co-acrylonitrile) (SAN) with SAA was examined as a function of the comonomer composition in the copolymers. For PCL/SAA blends it was found that PCL is miscible with SAA within a specific range of copolymer compositions. Segmental interaction energy densities were evaluated by analysis of the equilibrium melting point depression and application of a binary interaction model. The results suggest that the intramolecular repulsion in SAA copolymer plays an important role in inducing the miscibility. Additionally, the critical AA content in SAA for the blend to be homogeneous was predicted by correlating the segmental interaction energy densities with the binary interaction model. For SAN/SAA blends, it was also found that SAA is miscible with SAN within a specific range of copolymer compositions. From the binary interaction model, segmental interaction energy denisties between different monomer units were estimated from the miscibility map and were found to be positive for all pairs, indicating that the miscibility of the blends is due to the strong repulsion in the SAA copolymers.  相似文献   

13.
The kinetics of crystallization and structure formation of polycaproamide (PCA) during anionic adiabatic polymerization of ε-caprolactam was studied. The adiabatic crystallization was shown to comprise three successive stages. In the first stage PCA forms dendritelike structures, the space between which is filled with the monomer. In the second stage rather rapid crystallization proceeds to give large loose spherulites. The dendritic structures serve as nuclei for development of spherulites. In the third stage slow secondary crystallization occurs. It is accomplished by crystallization of the residual amorphous substance located both in the dendritic nucleus and throughout the volume of the spherulites. This process is followed by the partial disappearance of the dendritic nuclei and by thickening of lamellae, which results in a substantial densification of initial structures and appearance of fine spherulites. As a result, a fine spherulitic structure with 50% crystallinity is formed.  相似文献   

14.
In the last few years much progress has been made in the development of hybrid polymer–inorganic filler nanocomposites. Nevertheless, many questions remain. The comprehension of the structure and the interactions at the polymer–nanofiller interface are crucial to foresee and control the properties of nanocomposites. Because of the high surface ratio of the inorganic nanofiller, the interface is expected to have a prevailing role in determining the nanocomposite properties. In this study we use X‐ray photoelectron spectroscopy (XPS) as a tool for the surface characterization of an organophilic montmorillonite/poly(ε‐caprolactone) exfoliated nanocomposite. The XPS core levels of the nanocomposite have been compared with those obtained from its precursors, and analyzed as reference compounds to evaluate eventual differences attributable to the polymer–nanofiller interfacial interactions. The XPS investigation has allowed us to propose a qualitative model of possible interface interactions between poly(ε‐caprolactone) and the organo‐modified montmorillonite. The model is substantiated by Fourier transform infrared spectroscopy (FTIR). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3907–3919, 2004  相似文献   

15.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

16.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

17.
A binary poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) (70/30 w/w) blend and a ternary PLLA/PCL/PLLA‐PCL‐PLLA blend of the same composition which contains 4 wt.‐% of a triblock PLLA‐PCL‐PLLA copolyester as compatibilizing agent were prepared by melt mixing at 200°C. Investigation of the thermal and mechanical properties of the blends and scanning electron microscopy of their fracture surfaces showed in the case of the ternary blend a better state of dispersion of PCL in the PLLA matrix and an improved toughness.  相似文献   

18.
Sulfonation of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene), PEEK, improves its miscibility with poly(ϵ-caprolactam), Nylon-6 (N6). This article describes the thermal transitions and the specific interactions that occur for blends of the free acid derivative (H-SPEEK) and the lithium (Li-SPEEK) and zinc salts (Zn-SPEEK) of sulfonated PEEK (19.2 mol % sulfonation) with N6. The interactions responsible for miscibility were characterized by Fourier transform infrared (FTIR) spectroscopy. For blends of H-SPEEK and N6, miscibility is due to hydrogen bonding between the sulfonic acid and the amide group. For blends of N6 with the salts of SPEEK the specific interaction involves an ion-dipole complex of Li+ with the amide carbonyl or Zn2+ with the amide nitrogen. The relative strengths of the intermolecular interactions for the three types of blends increased as the cation was varied in the order: H+ < Li+ < Zn2+, and the Tgs of the mixtures increased in the same order. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Binary blends of polycaprolactone (PCL) with poly(vinyl chloride) (PVC) and nitrocellulose (NC) have been shown to be compatible over a wide range of composition. In this study, segmental orientation was determined by dynamic, differential infrared dichroism for each component in the PVC and NC blends with PCL. In compatible amorphous blends, PCL orientation behavior was essentially the same as for the orientation of NC or the isotactic segments of PVC. Syndiotactic PVC segments showed higher orientations, reflecting the greater intrachain stiffness of the microcrystalline PVC phase. PCL segments in the blends where the PCL component was semicrystalline were found to exhibit orientation characteristics which were quite different from the orientation of the nitrocellulose and PVC components of the blends. By assuming that the NC orientation represented the response of the amorphous PCL, the orientation of the crystalline PCL was determined for a NC blend using a simple model of additive dichroism response. In PVC blends, a similar analysis using the amorphous-component response of PVC was made. In both cases the results from the dichroism model showed fair agreement with the PCL unit cell C-axis orientation from independent dichroism calculations.  相似文献   

20.
This article deals with the anionic polymerization of ε-caprolactam in the presence of N-substituted phosphorus-containing derivatives of ε-caprolactam: diethyl-(N-caprolactam)-phosphonite (PL1); diethyl-(N-caprolactam)-phosphonate (PL2), and 2,5-dichlorophenyl-bis-(N-caprolactam)-phosphinate (PL3). It has been found out that PL1 and PL3 had an accelerating effect on the anionic polymerization of ε-caprolactam. The polymerization runs at high velocity and high degree of conversion. PL2 does not accelerate the anionic polymerization of ε-caprolactam, but when the polymerization is activated by a strong activator of acyl lactam type, and the PL2 concentration is commensurate with that of the activator, the process runs at a slightly lower rate and at a relatively high degree of conversion. The kinetics of the anionic polymerization in the presence of the three compounds was investigated. Equations describing the effect of the reagents on the polymerization rate were suggested. The activating energy of the polymerization was found out. The different actions of PL1, PL2, and PL3 during the anionic polymerization of ε-caprolactam were explained by their structural differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号