首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The room-temperature optical properties of calf thymus DNA, with about 75% of its guanine residues methylated at position N-7, are compared with those of 7-methyl GMP which has the same fluorophore. The fluorescence spectrum of the methylated guanine residues depends strongly on the excitation wavelength, shifting to the blue as the wavelength increases. The fluorescence quantum yield, corrected for the contribution to absorption by the other virtually nonfluorescent residues, exhibits a pronounced drop at long excitation wavelengths relative to that for excitation at 265 nm. The degree of fluorescence polarization exhibits a weak dependence on the excitation and emission wavelengths. For 7-methyl GMP, the fluorescence spectrum is very weakly dependent on the excitation wavelength and its fluorescence quantum yield shows a moderate increase at long wavelengths. The degree of fluorescence polarization increases with increasing excitation wavelength particularly when monitoring the emission in the short wavelength region of the fluorescence spectrum. A pronounced drop of unknown origin is observed when exciting at 265 nm, which is not observed for methylated DNA. The methylated DNA data are interpreted in terms of a combination of (i) a heterogeneous environment of the methylated guanine residues, which results from sequence-dependent stacking interactions, and (ii) transfer of excitation energy from the other residues to the fluorescing methylated guanine residues. From the values of the quantum yields and those of the decay times, which we have recently reported (Georghiou et al., 1985), the following values are obtained for the radiative, kt, and the sum of the nonradiative, σk1, rate constants for deexcitation of the excited states of methylated DNA and its free fluorophore: 1.6 × 108 s-1 7 × 107 s-1 and 5 × 1010 s-lvs 6 × 109 s-1. Because of energy transfer from the other residues. the kf value for the methylated guanine residues is overestimated but their σk1, value is not affected significantly and is by about an order of magnitude larger than that for 7-methyl GMP, apparently because of stacking interactions.  相似文献   

2.
Abstract— The degree of polarization of chlorophyll- a (Chl- a ) fluorescence is known to monitor the extent of excitation migration and/or the orientation of the photosynthetic pigment molecules. We report here the effects of cations, at room temperature, on the degree of polarization of Chl- a fluorescence, and fluorescence intensity in thylakoids as a function of excitation wavelength. Observations of maxima at 650 and 675 nm in the cation-induced changes in the excitation spectrum for fluorescence at 730 and 762 nm, and, in the action spectra for the depolarization of fluorescence lead us to suggest that the regulation of the initial distribution of excitation to photosystem II involves the better coupling of Chl- b and- a in the light harvesting complex with Chl- a in the reaction center II complex.  相似文献   

3.
Photoinduced excited state dynamical processes in quinine sulphate dication (QSD) have been studied over a wide range of solute concentrations using steady state and nanosecond time-resolved fluorescence spectroscopic techniques. The edge excitation red shift (EERS) of emission maximum, emission wavelength dependence of fluorescence lifetimes and the time dependence of emission maximum are known to occur due to the solvent relaxation process. With increase in solute concentration, the emission spectrum shifts towards the lower frequencies accompanied with decrease in fluorescence intensity, however, absorption spectrum remains unchanged. A decrease in EERS, fluorescence lifetimes, time dependent fluorescence Stokes shift (TDFSS), fluorescence polarization and the solvent relaxation time (τr) is observed with the increase in solute concentration. The process of energy migration among the QSD ions along with solvent relaxation has been found responsible for the above experimental findings.  相似文献   

4.
《Chemical physics》2001,263(2-3):401-414
We have recorded the dispersed fluorescence and the fluorescence excitation spectra of C60 in toluene matrices at 5 K. Upon excitation with the green Ar+ laser line (λ=514 nm) we obtained for the first time in this matrix well resolved visible fluorescence spectra which we have compared with those observed in other low temperature matrices. Our spectra were interpreted and assigned using theoretical assessments of vibronic activities of transitions between the three lowest excited electronic states 1T1g, 1T2g, 1Gg and the totally symmetric ground state, and on the basis of a single 00 level which has pseudo-Jahn–Teller (JT) components of the three near-degenerate excited states. The fluorescence spectra exhibit prominent JT induced hg(1) progressions, Herzberg–Teller-induced hu and other ungerade mode vibrations, including a very active t1u(4) mode. Excitation wavelength independent bands are assigned to the fluorescence of C60 molecules in toluene microcrystals embedded in the toluene glass whereas excitation wavelength dependent features are interpreted as originating from C60 molecules isolated in the toluene glass itself. These interpretations are supported by the results of spectrally selective detected fluorescence excitation spectra.  相似文献   

5.
Vimal K. Bhardwaj 《Tetrahedron》2008,64(22):5384-5391
A new set of tripodal receptors based upon an aromatic platform have been synthesized in high yields. The compounds have been characterized by spectroscopic techniques and by single crystal X-ray crystallography. These receptors are found to have good extraction ability and high transport rate for Ag(I). The receptor with imine linkages exhibits weak fluorescence emission bands at λmax=413 and 540 nm, upon excitation at λmax=365 nm. The fluorescence spectrum of the receptor shows enhancement in the intensity of the signal at 413 nm on binding with the Ag+ cation. No such significant changes are observed with other metal ions. An absorption at ∼365 nm is typical of an intraligand (π-π) transition involving the imine chromophore, which produces a weak emission band at 413 nm due to quenching caused by PET from a neighboring -OH group. Participation of OH group in coordination to the metal ion reduces PET and an enhancement of fluorescence intensity is observed, signaling recognition of the metal ion.  相似文献   

6.
Abstract— The fluorescence excitation spectrum and the excitation polarization spectrum of indole in propylene glycol were measured at — 58°C, after selecting by optical filters the emission originating from the 1La electronic level. From the analysis of these spectra, the excitation spectrum was resolved into the 1La and 1La excitation bands. A similar resolution of the excitation spectrum of tryptophan is given. This method can also be applied to the resolution of the emission spectrum in cases of dual emission.  相似文献   

7.
Effect of the wavelength of excitation light (λex) on the fluorescence excitation and emission spectra of 5-fluorouracil in acidic solution (pH 2.5) was studied upon excitation at the S 2S 0-transition absorption band. It has been found that direct excitation at the second or the shorter wavelength absorption band results in 5-fluorouracil fluorescence that originates not only from the first excited state S 1 but is also due the transition from the second excited state S 2 to the ground state.  相似文献   

8.
The laser-induced photoassociation of colliding pairs of Xe and Br(2P3/2) atoms has been demonstrated by observing the XeBr(B→A) fluorescence following the XeBr(B→X) laser-induced excitation. Analysis of the B←X excitation spectrum shows that the excitation transition is almost entirely bound — free in nature. The fluore scence and excitation XeBr* spectra are used to discuss the XeBr (X, B and A) potentials. Analysis of the polarization of the XeBr(B-X) fluorescence shows that the XeBr(B) molecules are generated with a high degree of alignment relative to the plane-polarized laser beam. The pressure dependence of the decay rate of the total intensity and of the polarization give radiation lifetimes, quenching rate constants and an estimate for the de-alignment cross section in collisions with Xe.  相似文献   

9.
Measurements of the steady-state fluorescence spectrum and anisotropy, r, of the alternating polynucleotide poly(dA-dT).poly(dA-dT) were carried out in order to characterize its photophysical properties at room temperature. The shape of the fluorescence spectrum depends on the excitation wavelength, namely, the relative fluorescence intensity of the short-wavelength peak decreases for excitation at short wavelengths. When monitoring the emission at short wavelengths, r is 0.18 and independent of the excitation wavelength. When monitoring the emission at long wavelengths, however, r is very low, about 0.03. These results suggest that: (i) the short-wavelength emission stems from thymine; and (ii) the long-wavelength emission stems from an excited-state complex (excimer), with the same one being formed regardless of whether thymine or adenine is excited. The corresponding fluorescence spectra have been resolved. The occurrence of transfer of electronic energy is discussed.  相似文献   

10.
Naphthalene vapor is irradiated by μsec dye laser pulses of 150 kW peak power and a spectral bandwidth of 0.3 nm. A two-photon excitation spectrum is detected by monitoring the near UV fluorescence as a function of laser wavelength which is tuned between 570 and 610 nm. The fluorescence obtained by irradiation into the strongest band of the two-photon spectrum could be spectroscopically resolved using a bandwidth of 80 cm?1. The spectrum exhibits vibrational structure which lies on a strong non-resolved background. From information in both spectra it can be definitely concluded that vibronic levels of B3u × b3u species in the lowest singlet state are predominantly excited in a two-photon process. The non-resolved background in the fluorescence spectrum is attributed to subsequent excitation of the two-photon state by a third photon. Further stepwise excitation in the strong radiation field of the laser is also taken into account.  相似文献   

11.
We have studied the absorption spectra, emission spectra, and fluorescence excitation polarization spectra of a series of free base and diprotonated etioporphyrin-I dimers covalently linked through (CH2)n bridges, n = 0–8. The absorption spectra of the n = 0 and n = 1 dimer show red shifts, which are largest (≈15 mm) for the Soret band of the n = 0 dimer. The Soret bands of the diprotonated dimers n = 0–3 show splitting (≈500–1000 cm?1) which can be interpreted by an exciton model assuming a reasonable geometry. The fluorescence spectra and quantum yields are similar to that of the monomer, except for the same red shift seen in absorption; however, the n = 0 diprotonated dimer shows an anomalo vibronic structure. The fluorescence excitation polarization spectra for the n = 0 and the n = 1 dimers differ substantially from the monomer; dimers n ? 3 have fluorescence excitation polarization spectra that suggest that some of the excitation stays localized in one moiety while the r hops to the dimer partner.  相似文献   

12.
聚对苯二甲酸乙二酯(PET)的荧光光谱已经得到了相当广泛和深入的研究,当激发光波长位于310~360nm时,可以观察到位于360~390nm范围的荧光发光,这部分荧光的来源有很多争议,至今未取得一致的看法,有作者认为,此处的荧光发光是PET链段上苯环之间的相互作用形成的基态二聚体(ground-state dimer)引起的发光;还有人认为这是苯环基团之间相互作用形成的激基缔合物的发光(excimeric emission)。  相似文献   

13.
《Chemical physics letters》1986,123(6):489-492
Fluorescence from an upper excited state of o-hydroxybenzaldehyde vapor at room temperature is reported. For excitation at the O-O band of the absorption from the ground state to the upper excited state, the fluorescence spectrum is located in the wavelength range between 250 and 300 nm and the fluorescence quantum yield is 1.6 × 10t−.  相似文献   

14.
In this study, Fe3O4@TiO2 nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with 89Zr. In addition, Fe3O4 nanoparticles were synthesized and radiolabeled with 89Zr. Df-Bz-NCS was used as bifunctional ligand. The nanoconjugates were characterized with transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Radiolabeling yields were 100%. Breast and prostate cancer cell affinities and cytotoxicity were determined using in vitro cell culture assays. The results demonstrated that Fe3O4@TiO2 nanoparticles are promising for PET/MR imaging. Finally, unlike Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles showed a fluorescence spectrum at an excitation wavelength of 250 nm and an emission wavelength of 314 nm. Therefore, in addition to bearing the magnetic properties of Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles display fluorescence emission. This provides them with photodynamic therapy potential. Therefore multimodal treatment was performed with the combination of PDT and RT by using human prostate cancer cell line (PC3). The development of 89Zr-Df-Bz-NCS-Fe3O4@TiO2 nanoparticles as a new multifunctional PET/MRI agent with photodynamic therapy and hyperthermia therapeutic ability would be very useful.  相似文献   

15.
Emission mechanism in an aromatic polyimide, PI(BPDA/PDA), derived from biphenyltetracarboxylic dianhydride and p-phenylene diamine were studied with ultraviolet visible absorption and fluorescence spectra of a series of the model compounds. The excitation spectrum of the intermolecular charge-transfer (CT) fluorescence peaking around 550 nm of PI(BPDA/PDA) thin film was completely consistent with the absorption spectrum, indicating that the intermolecular CT fluorescence emission of PI(BPDA/PDA) film is not caused by direct excitation of the CT absorption band, but by light absorption due to structural units in the polymer backbone. The UV-vis. absorption spectra of the model compounds corresponding to the structural units in PI(BPDA/PDA) showed that the longest wavelength absorption band is due to the biphenylbisimide moiety. The band was assigned as π, π* transition with the polarization spectrum of the model compound. The fluorescence spectra of the model compounds changed sensitively depending on the conformation around N-phenyl bond. The lifetime measurement for the model compounds suggested that intramolecular CT process occurs very rapidly. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Abstract— The current work concerns investigation of the polarization properties of complex molecular ensembles exhibiting threefold (C3) rotational symmetry, particularly with regard to the interplay between their structure and dynamics of internal energy transfer. We assume that the molecules or chromophores in such complexes possess strongly overlapped spectra both for absorption and fluorescence. Such trimeric structures are widely found in biological preparations, as for example the trimer of C-phycocyanin (C-PC). Higher order aggregates, e.g. hex-amers and three-hexamer rods, are also investigated and compared with the trimer case. The theory addresses both steady-state and 8-pulse excitation and establishes some links between them. Monochromophoric, bichro-mophoric and trichromophoric molecular complexes are individually examined. For steady-state excitation, analytical formulas are reported for the degree of fluorescence polarization and absorption anisotropy. It is shown that the polarization is dependent on the chromophore inclination relative to the symmetry axis, the relative efficiencies of absorption and fluorescence by chromophores of different spectral types, and the rates of energy equilibration. To assess the validity of the theory, it has been applied to C-PC aggregates. Here it was found that different C-PC aggregates provide practically identical polarization response. For S-pulse excitation we give analytical formulas for determination of the fluorescence depolarization, and also the depolarization associated with absorption recovery, both for a monochromophoric trimer and some particular cases of bichromophoric trimer. More complicated systems are analyzed by computer modeling. Thus it transpires that the initial polarization anisotropy r(t = 0) takes the value 0.4 for all considered aggregates; the long-time limit r(t →∞) has about the same value as is associated with steady-state excitation. We also show that with steady-state excitation the degree of fluorescence polarization is practically equal for various C3 aggregates of C-PC, and that the major factor determining the polarization is the chromophore orientation relative to the symmetry axis.  相似文献   

17.
A modular approach was proposed for the preparation of chiral fluorescent molecular sensors, in which the fluorophore, scaffold, and chirogenic center can be connected by ethynyl groups, and these modules can easily be changed to other structures to optimize the molecular sensing performance of the sensors. This modular strategy to assembly chiral sensors alleviated the previous restrictions of chiral boronic acid sensors, for which the chirogenic center, fluorophore, and scaffold were integrated, thus it was difficult to optimize the molecular structures by chemical modifications. We demonstrated the potential of our new strategy by the preparation of a sensor with a larger scaffold. The photoinduced electron‐transfer (PET) effect is efficient even with a large distance between the N atom and the fluorophore core. Furthermore, the rarely reported donor‐PET (d‐PET) effect, which was previously limited to carbazole, was extended to phenothiazine fluorophore. The contrast ratio, that is, PET efficiency of the new d‐PET sensor, is increased to 8.0, compared to 2.0 with the previous carbazole d‐PET sensors. Furthermore, the ethynylated phenothiazine shows longer excitation wavelength (centered at 380 nm) and emission wavelength (492 nm), a large Stokes shift (142 nm), and high fluorescence quantum yield in aqueous solution (Φ=0.48 in MeOH/water, 3:1 v/v). Enantioselective recognition of tartaric acid was achieved with the new d‐PET boronic acid sensors. The enantioselectivity is up to 10 (ratio of the binding constants toward D ‐ and L ‐tartaric acid, kD/kL). A consecutive fluorescence enhancement/decrease was observed, thus we propose a transition of the binding stoichiometry from 1:1 to 1:2 as the analyte concentration increases, which is supported by mass spectra analysis. The boronic acid sensors were used for selective and sensitive recognition of disaccharides and glycosylated steroids (ginsenosides).  相似文献   

18.
The two-photon excitation (TPE) of benzene fluorescence in the vapor phase at 60 torr is reported for the total-energy region from 38 086 cm?1 to 42 441 cm?1 using both circular and linear polarized light from a nitrogen-pumped dye-laser. The theory of the polarization dependence of the vibronic transitions in benzene is briefly reviewed, and it is seen how transitions involving vibrations of b1u symmetry are expressly forbidden for this type of TPE experiment in which the two photons are identical. Five vibronic origins with distinctive rotational contours and polarization dependence are identified in the TPE spectrum. The υ14(b2u) vibronic origin at 1570 cm?1 (above the electronic origin of the IB2u state) stands out very prominently in the linear polarized spectrum, but nearly disappears in the circular polarized spectrum. This striking polarization dependence indicates a significant contribution of A2u electronic states to the intermediate states of this TPE vibronic transition. The relatively great strength of the υ14 band may be due to vibronic borrowing by the b2u mode from the ground electronic state (A1g).  相似文献   

19.
We report the steady-state fluorescence properties of the alternating polynucleotide poly(dG-dC).poly(dG-dC) in low-salt solution at room temperature for excitation at the Hg lines 265, 280 and 297 nm. Its fluorescence spectrum peaks at about 325 nm and, within the experimental error, its shape does not change significantly with the excitation wavelength. The fluorescence anisotropy is found to decrease strongly for short-wavelength excitation, a behavior which is very similar to that exhibited by free guanine. In view of the fact that the anisotropy for free cytosine is virtually constant at the aforementioned three excitation wavelengths, the results suggest that in this polynucleotide the emission stems from guanine. The values of the fluorescence quantum yield for the three excitation wavelengths are found to be very low, 0.8 x 10(-5), 0.8 x 10(-5), and 2.8 x 10(-5), respectively; these are compatible with transfer of energy from the lower-energy electronic state of guanine, before vibronic relaxation is established, to cytosine. Upon denaturation, the fluorescence spectrum becomes very broad and the fluorescence quantum yield increases; these observations support the authenticity of the emission from the nondenatured polynucleotide.  相似文献   

20.
Abstract— Trimeric and hexameric solution forms of C-phycocyanin (CPC) from the cyanophyte Agme-nellum quadruplicatum have been isolated and their spectral properties compared to those obtained from single crystals. Although the absorbance peak of a suspension of small C-phycocyanin crystals is red-shifted only 7 nm relative to the solution forms, the single crystal fluorescence is red-shifted 60 nm relative to the solution forms. The crystal fluorescence spectrum exhibits a single peak at LDmax= 708 nm when excited at 514.5 or 530.9 nm and two peaks (LDmax= 661 and 708 nm) when excitation occurs at 568.2 nm. Fluorescence depolarization measurements indicate that extensive energy transfer could occur for both solution and crystal forms with the latter being dependent upon the relative orientation of the crystal with respect to the excitation dipole. Similar results were obtained with B-phycoerythrin (BPE) from the red alga Porphyridium cruentum where the single crystal fluorescence is red-shifted =50nm relative to the solution spectra with two peaks (LDmax= 583 and 617 nm) observed whose relative intensities are dependent on the excitation wavelength (LDmax 514.5 and 530.9 nm). Single crystal fluorescent lifetimes exhibited considerable shortening relative to that observed for the solution forms. The implications of these results are discussed with respect to the possible relationships of the crystalline structures to the assembly forms present within phycobilisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号