首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

2.
Living cationic polymerizations of two silicon-containing vinyl ethers, 2-(t-butyldimethyl-silyloxyl)ethyl vinyl ether (tBuSiVE) and 2-(trimethylsilyloxyl)ethyl vinyl ether (MeSiVE), have been achieved with use of the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?15 or ?40°C, despite the existence of the acid-sensitive silyloxyl pendants. The living nature of the polymerizations was demonstrated by linear increases in the number-average molecular weights (M?n) of the polymers in direct proportion to monomer conversion and by their further rise upon addition of a second monomer feed to a completely polymerized reaction mixture. The polymers obtained in these experiments all exhibited very narrow molecular weight distributions (MWD) with M?w/M?n around or below 1.1. Desilylation of the polymers under mild conditions (with H+ for MeSiVE and F? for tBuSiVE) gave poly(2-hydroxyethyl vinyl ether), a water-soluble polyalcohol with a narrow MWD. The living processes also permitted clean syntheses of amphiphilic AB block copolymers and water-soluble methacrylate-type macromonomers, all of which bear narrowly distributed segments of the polyalcohol derived from the silicon-containing vinyl ethers.  相似文献   

3.
The living cationic polymerization of vinyl ethers was carried out with organoaluminum compounds in the presence of various types of esters and ethers (cyclic and acyclic), to find out the suitable added bases available for the living polymerization. The effects of the basicity and steric hindrance of added bases were investigated in detail. On the basis of these results, a fast living polymerization system was realized. To synthesize water-soluble polymers such as thermally-induced phase separating polymers and polyalcohols with well-defined polymer structure, the living polymerization of various vinyl ethers was examined. The aqueous solution of living poly(vinyl ethers) having oxyethylene units exhibited a quite sensitive (ΔTps=0.3–0.5°C) and reversible phase separation on heating and cooling. The effects of polymer structures (pendant substituent, polymer sequence, molecular weight, and MWD) on the phase separation behavior were investigated. PVA and block copolymers containing PVA units with a narrow MWD were also prepared via living cationic polymerization of vinyl ethers and a deprotection reaction.  相似文献   

4.
This paper reviews the recent progress in our research on the living cationic polymerization of vinyl compounds by the hydrogen iodide/iodine (HI/I2) initiating system, with emphasis on its scope, mechanism, and applications to new polymer synthesis. The scope of the living cationic polymerization has been expanded to include vinyl ethers, propenyl ethers, unsaturated cyclic ethers, and styrene derivatives as monomers. The initiation/propagation mechanism was discussed on the basis of recent direct analysis on the living system by NMR and UV/visible spectroscopy. The proposed mechanism involves a quantitative formation of Hl-vinyl ether adduct [CH3-CH(OR)-I; l] that is by itself incapable of initiating polymerization. In the presence of iodine, however, the CH-I bond of l is electrophilically activated by iodine and living propagation occurs via the insertion of vinyl ether to the activated CH-I bond. Such living polymerizations were found to proceed in not only nonpolar but polar solvents (CH2Cl2) as well. Quenching the living end with amines gave polymers capped with an amino group that in turn enabled us to determine the living end concentration. Applications of the HI/I2-initiated living process to the synthesis of new bifunctional and block polymers were also described.  相似文献   

5.
The cationic polymerization of cis- and trans-ethyl propenyl ethers (EPE, CH3? CH?CH? O? C2H5), initiated by a mixture of hydrogen iodide and iodine (HI/I2 initiator) at ?40°C in nonpolar media (toluene and n-hexane), led to living polymers of controlled molecular weights and a narrow molecular weight distribution (MWD) (M?w/M?n = 1.2–1.3). The geometrical isomerism of the monomer did not affect the living character of the polymerization. 13C NMR stereochemical analysis of the polymers showed that the living propagating end is sterically less crowded than nonliving counterparts generated by conventional Lewis acids (e.g., BF3OEt2). New block copolymers between EPE (cis or trans) and isobutyl vinyl ether were also prepared by sequential living polymerization of the two monomers.  相似文献   

6.
Ethyl 2-(vinyloxy)ethoxyacetate ( 4 ; CH2?CH? OCH2CH2OCH2? COOC2H5), a vinyl ether having both carboxylic acid ester and oxyethylene unit in its pendant, afforded well-defined living polymers when polymerized by the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?40°C. The polymers possessed a narrow molecular weight distribution (M w/M n ≤ 1.15), and their molecular weight (M n) increased proportionally to monomer conversion or the molar ratio of the monomer to hydrogen iodide. The polymer molecular weight also increased upon addition of a fresh feed of the monomer to a completely polymerized reaction mixture. Polymers of high molecular weights (M n > 5 × 105) and broad molecular weight distributions were obtained by BF3OEt2 in toluene at ?40°C. Polymerization rate of 4 with HI/I2 is ca. 100 times greater than that of the corresponding alkyl vinyl ether, and thus 4 was found to be one of the most reactive vinyl ethers thus far studied. Alkaline hydrolysis of the pendant ester groups of the polymers gave a vinyl ether-based polymeric carboxylic acid 6 with a narrow molecular weight distribution.  相似文献   

7.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

8.
D -glucosamine-containing glycopolymers with well-controlled structure were synthesized by living cationic polymerization. To this end, D -glucosamine-containing vinyl ether (VE) of the type [CH2()CH(OCH2CH2OR)] was prepared, where R denotes a 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimide-β-D -glucopyranoside, i.e., the hydroxyl and amino groups in D -glucosamine residues are protected by acetyl and phthaloyl groups, respectively. It was found that (1) the efficient living cationic polymerization of VE monomer is achieved by a combination of ethylaluminum dichloride (EtAlCl2) with an adduct of trifluoroacetic acid (TFA) and isobutyl VE (IBVE) [CH3CH(OiBu)OCOCF3] (i.e., TFA/EtAlCl2 initiating system); and (2) the polymerization in toluene at the elevated temperature (0°C) is most suitable to proceed the homogeneous polymerization over the whole conversion range. The molecular weight distribution of the resulting polymers was very narrow ($ {\bar M}_w/{\bar M}_n \sim 1.1 $). Quantitative deprotection of the resulting precursor polymers was successfully achieved with hydrazine monohydrate to afford the corresponding water-soluble polymers with pendant D -glucosamine residues. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 751–757, 1997  相似文献   

9.
Amphiphilic graft polymers of vinyl ethers (VEs) ( 6 ) where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(alkyl vinyl ether) segment were prepared on the basis of living cationic polymerization, and their properties and functions were compared with the corresponding amphiphilic star-shaped polymers. In toluene at ?15°C, the HI/ZnI2-initiated living block polymer 2 of an ester-containing VE (CH2? CHOCH2CH2OCOCH3) and isobutyl VE (IBVE) was terminated with the diethyl 2-(vinyloxy)ethylmalonate anion [ 3 ; ΦC(COOEt)2CH2CH2OCH ? CH2] ( 2/3 = 1/2 mole ratio) to give a macromonomer ( 4 ), H[CH2CH(OCH2CH2OCOCH3)] m-[CH2CH(OiBu)]n? C(COOEt)2CH2CH2OCH ? CH2 (m = 5, n = 15; M?n = 2600, M?w/M?n = 1.13, 1.10 vinyl groups/chain). Subsequently, 4 was homopolymerized with HI/ZnI2 in toluene at ?15°C. In 3 h, 85% of 4 was consumed and a graft polymer ( 5 ) was obtained [M?w = 15000, DPn (for 4 ) = 6]. The apparent M?w (10,900) of 5 by size-exclusion chromatography (SEC) is smaller than that by light scattering as well as that (18,300) by SEC of the corresponding linear polymer with the almost same molecular weight, indicating the formation of a multi-branched structure. Hydrolysis of the pendant esters in 5 gave the amphiphilic graft polymer 6 where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(IBVE) segment. The graft polymer 6 was found to interact specifically with small organic molecules (guests) with polar functional groups, and 6 differed in solubility and host-guest interaction from the corresponding star-shaped polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
p-Vinylphenyl glycidyl ether (VPGE), a styrene derivative with an epoxy pendant, was polymerized by various cationic initiators, and its selective vinyl polymerization was investigated at low temperatures below ?15°C. BF3OEt2 (a metal halide) and CF3SO3H (a strong protonic acid) polymerized both vinyl and epoxy groups of VPGE, and produced cross-linked insoluble polymers. The HI/I2 initiating system and iodine, in contrast, polymerized its vinyl group in polar solvents (CH2Cl2 and nitroethane) highly selectively in the temperature range of ?15 to ?40°C to give soluble polymers with a polystyrene backbone and epoxy pendants; however, under these conditions, 10–15% of the epoxy groups of the polymers were consumed during the polymerization by the reaction with the growing species. The polymerization by HI/I2 in CH2CI2 involved a long-lived propagating species, as indicated by a progressive increase in the molecular weight (M?n) of the polymers with monomer conversion and their fairly narrow molecular weight distributions (M?w/M?n ~ 1.6). The differences between the polymerizations of VPGE and p-isopropenylphenyl glycidyl ether, an α-methylstyrene-type counterpart of VPGE, were also discussed with an emphasis on the effects of the α-methyl group in the latter monomer.  相似文献   

12.
Amphiphilic block polymers of vinyl ethers (VEs). $\rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OCH}_{\rm 2} {\rm CH}_{\rm 2} {\rm NH}_{\rm 2} } \right)\rlap{--} ]_m \rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OR}} \right)\rlap{--} ]_n \left( {{\rm R: }n{\rm - C}_{{\rm 16}} {\rm H}_{{\rm 33}} ,{\rm }n{\rm - C}_{\rm 4} {\rm H}_{\rm 9} ;m \simeq 40,{\rm n} = 1 - 10} \right)$ were prepared, each of which consists of a hydrophilic segment with pendant primary amino groups and a hydrophobic poly(alkyl VE) segment. Their precursors were obtained by the HI/I2-initiated sequential living cationic polymerization of an alkyl VE and a VE with a phthalimide pendant (CH2 = CHOCH2CH2Im; Im; phthalimide group), where the segment molecular weights and compositions (m/n ratio) could be controlled by regulating the feed ratio of two monomers and the concentration of hydrogen iodide. Hydrazinolysis of the imide functions gave the target polymers which were readily soluble in water under neutral conditions at room temperature. These amphiphilic block polymers lowered the surface tension of their aqueous solutions (0.1 wt%, 25°C) to a minimum ? 30 dyn/cm when the hydrophobic pendant R was n-C4H9 (n = 4–9). The polymers with n-C4H9 pendants in the hydrophobic segment exhibited a higher surface activity than those with n-C16 H33 pendants. The surface activity of the polymers also depended on the pH of the polymer solutions; the surface activity increased in more basic solutions where the ionization of the amino group (? NH2)2? NH3) is suppressed.  相似文献   

13.
This study has shown a nearly perfect living polymerization of isobutyl vinyl ether (IBVE) to proceed not only in nonpolar media (e.g., n-hexane) but in relatively polar CH2Cl2 solvent, provided that the HI concentration is sufficiently high. The produced polymers had a nearly monodisperse molecular weight distribution (M w/M n ≤ 1.1); the number-average molecular weight (M n) increased in direct proportion to IBVE conversion and its increase continued on the addition of a fresh feed of the monomer at the end of the polymerization. The use of a more polar medium (PhNO2/CH2Cl2) or a lower HI concentration leads to chain transfer reactions, by promoting the ionic dissociation of the “nondissociated” living propagating species. The successful living polymerization by HI/I2 in CH2Cl2 indicates a very strong interaction between the iodide anion and the growing end.  相似文献   

14.
This paper focuses on two recent topics in living cationic polymerization of vinyl monomers, i.e., (a) Development of new initiating systems: RCOOH/Lewis acid for vinyl ethers; CH3CH(C6H5)Cl/SnCl4/nBu4NCl for styrene. (b) Synthesis of shape-controlled poly(vinyl ethers): Tri-armed star polymers; Multi-armed spherical polymers. For the RCOOH-based systems, a generalized concept of living cationic polymerization was discussed on the basis of the effects of the counteranions (or R) and Lewis acids (ZnCl2 and EtAlCl2). The CH3CH(C6H5)Cl-based system permitted a truly living cationic polymerization of styrene. The tri- and multi-armed poly(vinyl ethers) included new amphiphilic polymers of unique topology, solubility, etc., all of which were prepared by living cationic polymerization.  相似文献   

15.
New sequence-regulated macromonomers ( 3 ) with a vinyl ether terminal were prepared by the HI/ZnI2-mediated living cationic polymerization of vinyl ethers: CH3? CH(OR1)? CH2CH(OR2)? C(COOEt)2CH2CH2OCH?CH2 ( 3a : R1 = nBu, R2 = CH2CH2OCOPh; 3b : R1 = iOct, R2 = CH2CH2Cl). The synthesis consisted of three consecutive steps: (i) quantitative addition of hydrogen iodide to the first vinyl ether into an adduct [CH3? CH(OR1)? l]; (ii) propagation of a second vinyl ether from the adduct in the presence of zinc iodide; and (iii) quenching the resulting AB-type heterodimeric living intermediate with a carbanion [θC(COOEt)2CH2CH2OCH?CH2] carrying a vinyl ether group. The HI/ZnI2-initiated living cationic polymerization of 3a and 3b yielded narrowly distributed polymers $\left( {\overline {DP}} _{_n } \sim 10 \right)$ consisting of a poly(vinyl ether) backbone and sequence-regulated oligomer branches. The terminal vinyl ether function of 3 was also utilized to prepare pentamers and hexamers with controlled sequence of functional vinyl ethers by selective dimerization and chain extension reactions with HI/ZnI2. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Cationic polymerization of 2-vinyloxyethyl glycidyl ether (VEGE), a vinyl ether with an epoxy group, was conducted with various initiators in CH2Cl2 in the temperature range from +15 to ?78°C, and the possibility of its selective vinyl polymerization was investigated. BF3OEt2 polymerized both vinyl and epoxy groups of VEGE to yield polymers partially insoluble in organic solvents. HI/I2, iodine, and CF3SO3H gave soluble, low-molecular-weight oligomers with epoxy pendants. 1H-NMR structural analysis of the oligomeric products showed that the epoxy/vinyl ratio of the pendants decreases in the order: 100% epoxy ~ CF3SO3H > HI/I2 ~ I2 ? BF3OEt2. Although HI/I2 or iodine mainly polymerized the vinyl group, the reaction of the vinyl ether-type growing end with an epoxy group of VEGE took place during the polymerization, so that the monomer conversion leveled off at about 40%.  相似文献   

17.
A series of multifunctional malonate anions, [Na⊕?C(COOEt)2CH2]mC6H6?m(I; m = 2–4), were examined as polymer coupling agents for the living cationic polymerization of vinyl ethers initiated with the hydrogen iodide/zinc iodide (HI/ZnI2) initiating system. The bifunctional anion ( 2 ;I, m = 2), 1,4-[Na⊕?C(COOEt)2CH2]2C6H4, terminated living polymers of isobutyl vinyl ether (IBVE) (DP n = 10) almost quantitatively in toluene at ?15°C to give coupled living polymers with doubled molecular weights in 96% yield; the dianion 2 was dissolved in tetrahydrofuran containing 18-crown-6 for maintaining the solution homogeneous. The yield of the coupled polymers was increased with shorter living chains or in less polar solvents. Also by coupling via 2 , ABA block copolymers were obtained from living AB block polymers of IBVE and an ester-functionalized vinyl ether (CH2?CHOCH2CH2OCOCH3). Coupling of living poly(IBVE) with the trifunctional anion ( 3 ; I, m = 3) led to tri-armed polymers in 56% yield, whereas with the tetrafunctional version ( 4 ; I, m = 4), only three out of the four anions reacted to give another tri-armed polymer in 85% yield. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

19.
A variety of cationic initiators were employed for p-isopropenylphenyl glycidyl ether (IPGE), an α-methylstyrene derivative with an epoxy pendant, and optimum initiators and reaction conditions were evaluated in terms of its selective vinyl polymerization and living polymerization. Despite the coexistence of two cationically polymerizable groups in IPGE, binary initiating systems (HI, CF3COOH, or CH3CH(OiBu)-OCOCH3, each coupled with ZnI2) and sulfonic acids (CF3SO3H and CH3SO3H) selectively polymerized the vinyl group of IPGE in CH2Cl2 at ?78°C to produce soluble polymers with epoxy pendant groups in high yield. Metal halides (BF3OEt2 and AlEtCl2) polymerized both the vinyl and epoxy groups of IPGE to give crosslinked insoluble polymers. In contrast, under these conditions, the HI/ZnI2 system also led to a long-lived polymer, the molecular weight of which increased upon addition of a fresh feed of monomer to a completely polymerized reaction mixture, whereas the use of other initiators resulted in nonliving polymers. At higher temperatures (?40 and ?15°C), soluble poly(IPGE) was also obtained with HI/ZnI2, but the polymer yield decreased with raising temperature, because of the occurrence of termination reaction.  相似文献   

20.
p-Isopropenylphenyl glycidyl ether (IPGE), a monomer of dual cationic functionality (isopropenyl and epoxy), was polymerized by a variety of initiators, and optimum conditions were established for its selective vinyl cationic polymerization. The hydrogen iodide/iodine (HI/I2) initiating system or iodine polymerized selectively the isopropenyl group in CH2Cl2 at a low temperature (?78°C), to produce soluble poly(IPGE) with epoxy pendants. Under these conditions, the number-average molecular weight of the polymers was inversely proportional to the initial initiator concentration, indicating the formation of long-lived propagating species. Soluble poly(IPGE) was also obtained at ?15 and ?40°C by HI/I2 or iodine. However, at these higher temperatures, transfer and/or termination reactions took place to give olefin-terminated polymers, in which some of the pendant epoxy groups were consumed. BF3OEt2 (a metal halide) and CF3SO3H (a strong protonic acid) polymerized both epoxy and isopropenyl groups of IPGE and yielded crosslinked insoluble polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号