首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorophosphine bidentate ligands containing o-carborane as backbone can be prepared by the reaction of the lithium-o-carboranes and PF2X derivatives to give only two species: the unsymmetrical (C6H5)2P[B10H10C2]PF2 and the cyclic FP[B10H10C2]2PF, both in low yield. However, exchange of F and NMe2 groups by use of PF5 or PF3 provides a facile way to produce several new fluorophosphines.Phosphorus pentafluoride forms solid adducts with the o-phosphino derivatives (C6H5)2P[B10H10C2]P(NMe2)2, (Me2N)2P[B10H10C2]P(NMe2)2 and (C6H5)2P[B10H10C2]H. All the adducts contain a phosphorus-phosphorus bond as evidenced from i.r., NMR and stoichiometry. The stability of the adducts reflects the strength of the PP bond formed upon complexation. When suspensions or solutions of the adducts are heated they exchange F and NMe2 groups and no redox occurs. The products (C6H5)2P[B10H10C2]P(F)NMe2(I) and Me2N(F)P[B10H10C2]P(F)NMe2(II) react further with PF5 giving (C6H5)2P[B10H10C2]PF2(III) and F2P[B10H10C2]PF2(IV).The precursors also react with phosphorus trifluoride to produce only (I) and (Me2N)2P[B10H10C2]P(F)NMe2(V) regardless of the reaction conditions. All the products I–V have been identified by 1H, 19F, and 31P NMR and i.r. spectroscopy, mass spectrometry, and elemental analysis. The NMR spectra of the novel (IV) have been analysed as X2AA1X12 spin system.  相似文献   

2.
Nitriles react with PF5 and also with AsF5, SbF5 forming 1:1-adducts. Using C2Cl3F3 as a solvent is of advantage for this reaction. PF5·CH3CN and [N(C2H5)4]SH give [N(C2H5)4][P2S2F8] with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF5·CH3CN a salt with the anion [AsF5NHCSCH3]? has been isolated [2]. Following products have been confirmed in a reaction mixture of PF5·CH3CN and SH? in acetonitrile by NMR (31P and 19F): [PF6]?, [F5PSPF5]2?,
, F4PSH, F3PS, HPS2F2, [PS2F2]?, [F5PNC(SH)CH3]?, [F5PNHCSCH3]?, [F5PSH]?. With a ratio PF5·CH3CN: SH? = 2:1 the S-bridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.  相似文献   

3.
Reaction of [Pt2Cl2(μ-dppm)2] with ligands, L, in the presence of [PF6- gave stable cationic diplatinum(I) complexes [Pt2L2(μ-dppm)2][PF6]2 where L = PMe2Ph, PMePh2, PPh3, NH3, C5H5N. Reaction of [Pt2(NH3)2(μ-dppm)2][PF6]2 with CO gave [Pt2(CO)2(μ-dppm)2][PF6]2 and an unsymmetrical complex [Pt2(CO)(C5H5N)(μ-dppm)2][PF6]2 was also prepared. The compounds were characterized by vibrational and 1H and 31P NMR spectroscopy and the presence of direct platinumplatinum bonds is indicated.  相似文献   

4.
The compounds C6Me6Ru(Ch3)2, C6H6Os(CH3)2PMe3 and C5H5Ir(CH3)2-Ppri3 react with [CPh3]PF6 in Ch2Cl2 to give the ethylene(hydrido)metal complexes [C6Me6RuH(C2H4)PR3]PF6, [C6H6OsH(C2H4)PMe3]PF6 and [C5H5IrH(C2H4)PPri3]PF6, respectively. Treatment of C6Me6RuCH3(C1)PMe3 with [CPh3]PF6 leads to cleavage of the RuCH6 bond instead of hydride elimination; in the presence of PMe2Ph the compound [C6Me6RuCl(PMe2Ph)PMe3]PF6 is obtained. The reaction of C5H5RhCH2OMe(PMe3)CH3 with HBF4 gives [C5H5RhH(C2H4)PMe3]BF4 and methanol. It is assumed that the formation of the ethylene(hydrido)metal complexes always occur via a M(CH2)CH3 intermediate, radical intermediates not being observed. The crystal structure of [C6Me6RuH(C2H4)PPh3]PF6 has been determined. The cation of 1.50 Å. The CC distance in the ethylene ligand is 1.41(1) Å and thus is significantly longer than in the free olefin.  相似文献   

5.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

6.
Photolysis of CpFe(ρ-xylene)+ (Cp = η5-cyclopentadienyl) in the presence of suitable 6- or 2-electron donor ligands results in replacement of the aromatic ring with one 6-electron or three 2-electron donor ligands. The compounds [CPFe(η6-C7H8)]BF4 (C7H8 = cycloheptatriene), [CpFe(η6-C8H8)]PF6, (C8H8 = cyclooctatetraene), [CpFe(η6-PCP)]PF6 (PCP = 2,2-paracyclophane), [CpFe-(P(OCH3)3)3]PF6 and [CpFe(P(OCH2CH3)3)3]PF6 were prepared in this manner. The compound [CpFe(TM4)3FeCp](PF6)2 · CH3COCH3 (TM4 = 2,5-dimethyl-2,5 diisocyanohexane) was prepared in two steps. First, [CpFe(ρ-xylene)]PF6 was irradiated with an excess of the free TM4 ligand producing a mixture of [CpFe(TM4)3]+ and [CpFe(TM4)3FeCp]2+. An additional equivalent of [CpFe(p-xylene)]PF6 was added to this mixture and photolysis yielded [CpFe(TM4)3FeCp](PF6)2 · CH3COCH3.  相似文献   

7.
Metal Complexes with Anionic Ligands of Main Group IV Elements. XI. Substitution Reactions of Trichlorogermide and Trichlorostannide Ions with Metaltrifluorophosphine Complexes The photochemical reactions of [SnCl3]? in THF with the metal(0)-trifluorophosphine complexes of Ni, Fe, and Mo result in [Ni(PF3)3SnCl3]?, [Fe(PF3)3(SnCl2]?, and [Mo(PF3)5SnCl3]?. [GeCl3]?, in substitution reactions not as reactive as [SnCl3]?, does react under similar conditions with Fe(NO)2(PF3)2 only, to yield [Fe(NO)2(PF3)GeCl3]?. With CpMn(PF3)3 (Cp = h5-C5H5) by the intermediatly formed CpMn(PF3)2THF both substitution derivatives [CpMn(PF3)2ECl3]? (E = Ge, Sn) are found. The metallate(0) complexes are isolated as [As(C6H5))4]+- and [N(C2H5)4]+ -salts; the i.r.- and 19F-n.m.r.-spectra are reported.  相似文献   

8.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

9.
《Thermochimica Acta》1986,109(1):29-44
Heat capacities of the channel inclusion compound, Fe(C5D5)2 · 3(NH2)2CS, and two ferrocenium salts, [Fe(C5H5)(C6H6)]+ (PF6) and [Fe(C5H5)2]+ (PF6), have been measured with adiabatic calorimeters between 13 and 393 K. Five phase transitions were found for Fe(C5D5)2 · 3(NH2)2CS corresponding to those for Fe(C5H5)2 · 3(NH2)2CS. The dominant phase transitions at 145.8 and 160.6 K are responsible for the onset of reorientational order-disorder of the molecular axis of Fe(C5D5)2 in the clathrate cavity. The mass-effect of the guest ferrocene molecule on the phase transitions was not remarkable. The ferrocenium salt, [Fe(C5H5)(C6H6]+(PF6), exhibited four phase transitions and two glass transition phenomena at low temperatures while its analog, [Fe(C5H5)2]+(PF6), brought about only three phase transitions without showing the glass transition. The higher-temperature phase transitions in these two salts have been assigned to the reorientational order-disorder mechanism of the molecular axes of the cations in the pseudo-cavities formed by eight PF6 anions. For the origin of the lower-temperature phase transitions in these two salts, three possibilities have been discussed. Among them, plausible origin is likely to be an order-disorder change of PF6 anion in the lattice. An important unsettled problem common to these three compounds is a question whether or not the Fe(C5D5)2 and the cations, [Fe(C5H5)(C6H6)]+ and [Fe(C5H5)2]+, are still reorienting around their molecular axes even at the lowest-temperature phase.  相似文献   

10.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

11.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

12.
Photolysis of (η5-C5H5Fe(CO)(CNMe)2]PF6 in the presence of excess nucleophiles resulted in efficient substitution of the carbonyl ligand, generating the new isocyanide complexes (η5-C5H5Fe(CNMe)2)(L)]PF6 (L = PPh3, AsPh3, SbPh3, pyridine, acetonitrile, and ethylene). Similar reactions of (η5-C5H5Fe(CO)2)(CNMe)PF6 led to sequential replacement of both carbony groups with the exception of L  ethylene. No evidence of photochemical isocyanide substitution was found. The same carbonyl complexes failed to reach with L thermally. In the absence of light, ethylene, pyridine, and acetonitrile complexes were found to disporportionate in the manner [η5-C5H5Fe(CNMe)(L)2]PF6→ [η5C5H5Fe(CNMe)2(L)]PF6 → [η5-C5H5Fe(CNMe)3]PF6 with the first rearrangement occurring much faster than the second. The new isocyanide complexes are characterized by their infrared and NMR (1H, 13C) spectra.  相似文献   

13.
Addition of [C7H7][PF6] to iron, ruthenium or osmium alkynyl complexes has given eight cationic cycloheptatrienylvinylidene derivatives [M{C C(C7H7)R}(L)2 (η-C5H5)][PF6] (M = Fe, Ru or Os; R = Me, Pr, Ph or C6F5; L = PPh3, L2 = dppm or dppe; but not all combinations). With Fe(C2Ph)(CO)2(η-C5H5), only [Fe(CO)2(thf)(η-C5H5)][PF6] was obtained. Reactions of the new complexes are characterised by loss of the C7H7 group. The NMR spectra and FAB mass spectra are described in detail.  相似文献   

14.
The syntheses and molecular structures, as determined by single‐crystal X‐ray diffraction analysis, of the first intramolecularly [4+2]‐coordinated tetraorganolead compound {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh3 ( 2 ) and the triphenyllead chloride adduct of the first intramolecularly coordinated benzoxaphosphaplumbole {[1(Pb), 3(P)‐Pb(Ph)2OP(O)(OEt)‐5‐t‐Bu‐7‐P(O)(OEt)2]C6H2·Ph3PbCl} ( 3a ) are reported. The reaction of 2 with [Ph3C]+ [PF6] and p‐MeC6H4SO3H, respectively, provides the triorganolead salts {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPh2+X ( 4 , X = PF6; 4a , X = p‐MeC6H4SO3). Reaction of 2 with bromine and hydrogen chloride, respectively, gives the diorganolead dihalides {4‐t‐Bu‐2, 6‐[P(O)(OEt)2]2C6H2}PbPhX2 ( 5 , X = Br; 6 , X = Cl).  相似文献   

15.
《Polyhedron》1999,18(23):2981-2985
The reaction of [{Ru(η6-C6H6)Cl(μ-Cl)}2] with Py3COH in ethanol results in the formation of the cation [Ru(η6-C6H6)(N,N′,O,-(C5H4N)3CO)]+ which is isolated as its hexafluorphosphate salt 1. The cation acts as a ligand towards other transition metal ions. With Ag+ the hetero-trinuclear complex [{Ru(η6-C6H6)((C5H4N)3CO)}2Ag][PF6]3 2 is formed, while reaction with [Pd(PhCN)2Cl2] gives the bimetallic [Ru(η6-C6H6)((C5H4N)3CO)PdCl2][PF6] 3. Both compounds were fully characterised by spectroscopic methods and the trinuclear complex was additionally characterised by X-ray diffraction.  相似文献   

16.
The solvento species obtained by treatment of the complexes [Rh(1,5-cyclooctadiene)Cl]2, [Rh(norbornadiene)Cl]2, [Rh(CO)2Cl]2, C5H5Rh(CO)I2, [C5Me5RhCl2]2, and [Ru(C6H6)Cl2]2 with AgPF6 in acetone or acetonitrile react with a large excess of Me2NNS to give the compounds [Rh(1,5-C8H12)-(SNNMe2)2]PF6 (1a), [Rh(C7H8)(SNNMe2)2]PF6 (1b), [Rh(CO)2(SNNMe2)2]PF6 (2), [C5H5Rh(SNNMe2)3](PF6)2 (3), [C5Me5Rh(SNNMe2)3](PF6)2 (4), and [Ru(C6H6(SNNMe2)3](PF6) (5). If the thionitroso ligand is not preent in large excess decomposition often occurs. The use of AgClO4 allows isolation of the perchlorate salts of 1a, 1b, 2, 4, and 5, and the complexes [C5H5Rh-(SNNMe2)2(ClO4)ClO4 (6) and Rh(1,5-C8H12)(SNNMe2)(ClO4) (7). In the H1 NMR spectra the methyl protons of Me2NNS are observed as two quadruplets, in the range δ 3.75–4.25 (4J(HH) ca. 0.7 Hz) because of restricted rotation around the NN bond. The rhodium(I) complexes (1a, 1b, and 2) reacts with PPh3 or p-tolylPPh2 to give labile products, and only [Rh(1,5-C8H12)(SNNMe2)(PPh3)]ClO4 (8) and [Rh(1,5-C8H12)(SNNMe2)(p-tolylPPh2)]ClO4 (9) were isolated and characterized.  相似文献   

17.
《Polyhedron》2001,20(15-16):2083-2088
New ferrocenyl-based bimetallic cationic compounds of the type of (E)-[CpFe(η5-C5H4)(CHCH)(C6H4)CNRuCp(PPh3)2]X (X=PF6, BF4) and of (E)-[CpFe(η5-C5H4)(CHCH)(C6H4)CNFeCp(CO)2]PF6 have been obtained and characterized. The crystal structure of (E)-[CpFe(η5-C5H4)(CHCH)(C6H4)CNRuCp(PPh3)2]BF4 has been established by means of X-ray diffractometry. The NLO responses of the compounds have been studied by the hyper-Rayleigh scattering technique and the hyperpolarizability is found to be dependent on the nature of the counterion.  相似文献   

18.
The 13C-NMR. spectra of the series of complexes η6-naphthalene · CrL3 (L? CO ( 1 ), PF3 ( 2 ), PF2OMe ( 6 ), P(OMe)3 ( 3 ), C10H8 (= 3 L) ( 4 ) and PMe3 ( 5 )) are reported. Definite assignments of the 13C-NMR. resonances were made through the synthesis of [2, 3, 6, 7-2H4]-naphthalene complexes. The coordinated ring 13C-resonance are found to undergo a smooth transition to higher field with increasing donor character of the coligands L. A correlation of the coordination shifts with the reactivity of the coordinated naphthalene is proposed. In complexes containing strong acceptor ligands the naphthalene is activated to attack by nucleophiles. Sequential treatment of complexes 1–4 , 6 and [C10H8FeC5H5]+[PF6]? ( 7 ) with stabilized carbanions and I2 or Ce(IV)-salt yields α-substituted naphthalenes in the case of 1 , 2 , 6 and 7 but not in the case of 3 and 4 . Treatment of 3 with an excess of HBF4 results not in the expected metal protonation but in a novel ligand transformation to yield 6 .  相似文献   

19.
A route to the stable hydrido-diene salts [(diene)RuHL3] PF6, (diene = cycloocta-l,5-diene, hexa-l,3-diene and buta-1,3-diene, L = PMe2 Ph; diene = cycloocta-l,5-diene, L = P(OMe)3, P(OCH2)3 CMe P(OMe)Ph2 and PMePh2) has been found and the structure of [RuH(C4H6)(PMe2Ph)3] PF6 has been determined by X-ray diffraction.  相似文献   

20.
A variety of piano-stool complexes of cyclopentadienyl ruthenium(II) with imidazole-based PN ligands have been synthesized starting from the precursor complexes [CpRu(C10H8)]PF6, [CpRu(NCMe)3]PF6 and [CpRu(PPh3)2Cl]. PN ligands used are imidazol-2-yl, -4-yl and -5-yl phosphines.Depending on the ligand and precursor different types of coordination modes were observed; in the case of polyimidazolyl PN ligands these were κ1P-monodentate, κ2P,N-, κ2N,N- and κ3N,N,N- chelating and μ-κP2N,N-brigding. The solid-state structures of [CpRu(1a)2Cl ]·H2O (5.H2O) and [{CpRu(μ-κ2-N,N-κ1-P-2b)}2](C6H5PO3H)2(C6H5PO3H2)2, a hydrolysis product of the as well determined [{CpRu(2b)}2](PF6)2.2CH3CN (7b.2CH3CN) were determined (1a = imidazol-2-yldiphenyl phosphine, 2b = bis(1-methylimidazol-2-yl)phenyl phosphine, 3a = tris(imidazol-2-yl)phosphine). Furthermore, the complexes [CpRu(L)2]PF6 (L = imidazol-2-yl or imidazol-4-yl phosphine) have been screened for their catalytic activity in the hydration of 1-octyne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号