首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ethylene, propylene homopolymerizations, and ethylene/propylene copolymerization catalyzed with rac‐Et(Ind)2ZrCl2/modified methylaluminoxane (MMAO) were conducted under the same conditions for different duration ranging from 2.5 to 30 min, and quenched with 2‐thiophenecarbonyl chloride to label a 2‐thiophenecarbonyl on each propagation chain end. The change of active center ratio ([C*]/[Zr]) with polymerization time in each polymerization system was determined. Changes of polymerization rate, molecular weight, isotacticity (for propylene homopolymerization) and copolymer composition with time were also studied. [C*]/[Zr] strongly depended on type of monomer, with the propylene homopolymerization system presented much lower [C*]/[Zr] (ca. 25%) than the ethylene homopolymerization and ethylene–propylene copolymerization systems. In the copolymerization system, [C*]/[Zr] increased continuously in the reaction process until a maximum value of 98.7% was reached, which was much higher than the maximum [C*]/[Zr] of ethylene homopolymerization (ca. 70%). The chain propagation rate constant (kp) of propylene polymerization is very close to that of ethylene polymerization, but the propylene insertion rate constant is much smaller than the ethylene insertion rate constant in the copolymerization system, meaning that the active centers in the homopolymerization system are different from those in the copolymerization system. Ethylene insertion rate constant in the copolymerization system was much higher than that in the ethylene homopolymerization in the first 10 min of reaction. A mechanistic model was proposed to explain the observed activation of ethylene polymerization by propylene addition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 867–875  相似文献   

2.
The ethylene polymerization with tetrabenzyl zirconium displays a higher concentration of active centres on catalysts obtained by supporting of the organometallic compound on alumina or silica-alumina carriers than by activation without supporting. The active centres of the supported catalysts possess different polymerization reactivity. At the beginning of the polymerization in the presence of monomer, these active centres are formed from a small amount of the stable surface compounds originated in the carrier impregnation. The maximum polymerization rate depends on the pretreatment, the loading and the porosity of the carrier. The more active these centres, the quicker they lose their activity. A relation was found between a chemical deactivation reaction and the concentration of the hydroxyl groups remaining on the catalyst after impregnation. Addition of hydrogen or butyllithium can change the polymerization in a different manner. The addition of butyllithium causes an increase in the number and the reactivity of the active centres and a suppression of the chemical deactivation.  相似文献   

3.
Coordination polymerization of olefins has become an industrially important, yet still poorly understood enterprise. The ethylene polymerization activity of (neophyl)nZrCl4-n shows a twentyfold increase from n = 4 to n = 3 and a further tenfold increase to n = 2. The heterogeneous MR4/TiCl4 catalysts (M = Ti, R = benzyl; M = Zr, R = benzyl, neophyl) have been developed. To explore the breadth of extendability, other metal chlorides (main group and transition metal) were substituted for TiCl4. Indeed, excess AlCl3 or MgCl2 and the MR4 compounds also produced ethylene polymerization catalysts. The inactivity of corresponding (neophyl)4Ti systems is attributed to sterics. The abovementioned catalysts highlight the necessity of alkyl and chloride ligands at the transition metal catalyst centers.  相似文献   

4.
The polymerization behavior of 2-(2′-pyridyl) quinoxaline nickel dibromide/Cp2ZrCl2/MAO system was investigated in three ways: the Ni catalyst was added first, followed by addition of Zr catalyst (method I); the Ni and Zr catalysts were added simultaneously (method II); and the Zr catalyst was added first, followed by addition of Ni catalyst (method III). Results of GC-MS, GPC,13C NMR and DSC investigations indicated that the properties of resulting polyethylene were greatly varied by changing feeding orders of the two catalysts. Decreasing Ni/Zr molar ratio or increasing polymerization temperature gave corresponding polyethylenes with less branches and higher melting point. Compared to the procedure using Cp2ZrCl2 catalyst only, the activity of Zr catalyst in those combined system decreased because of the competition of ethylene between the [Ni−C] and [Zr−C] active centers. In addition, other zirconocenes were also employed as copolymerization catalysts in the combined system with nickel complex. compared to Cp2ZrCl2 case, the ethyl-bridged Zr catalyst performed better for polymerization of ethylene while the Si-bridged Zr catalyst showed better copolymerization ability.  相似文献   

5.
The kinetics of ethylene polymerization using homogeneous Cp2ZrCl2/aluminoxane catalysts in toluene has been investigated at 70 °C with an ethylene pressure of 30 psi. Four aluminoxanes were used: methylaluminoxane, modified methylaluminoxanes with a fraction of methyl groups substituted with isobutyl (MMAO‐4) or octyl (MMAO‐12) groups, and polymethylaluminoxane (PMAO‐IP). The cocatalyst‐to‐catalyst ratio, [Al]/[Zr], varied from 1000 to 10,000. The experimental results obtained using the four cocatalysts were compared and a model was proposed to fit the rate of polymerization as a function of polymerization time and [Al]/[Zr] ratio. Molecular weight distributions with polydispersities between three and four indicate the presence of more than one active site type. We proposed a model that explained these broad molecular weight distributions using an unstable active complex that is formed in the early stages of the reaction and is transformed over time to a more stable active complex via an intermediate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1677–1690, 2007  相似文献   

6.
A series of zirconium catalysts based on tridentate 8-hydroxyquinoline Schiff base ligands were prepared and successfully used for polymerization of ethylene. The highest activities of the prepared catalysts were obtained at polymerization temperatures about 30–45ºC. By increasing the [Al]/[Zr] molar ratio productivity of all the catalysts enhanced to an maximum value then decrease at higher [Al]/[Zr] molar ratio with the exception of catalyst 4, which showed no optimum activity in the range studied. Also, the activities and selectivities to produce low-carbon olefins were profoundly influenced by the catalysts structure indicating the dramatic effects of the substitution on the polymerizations behavior. Fouling of the reactor was strongly related to polymerization parameters like as monomer pressure and [Al]/[Zr] ratio in the homogeneous polymerization. Heterogeneous polymerization of ethylene using the catalysts and the MAO modified silica decreased the fouling. The obtained polyethylenes have a melting point of about 125–130°C, crystallinities of about 45–55% and PDI of 2.45–3.45.  相似文献   

7.
The kinetics of ethene and propene polymerization at 20–60°C in the presence of the homogeneous catalyst system rac‐Me2Si(2‐methyl‐4‐phenyl‐1‐indenyl)2ZrCl2/methylaluminoxane was investigated by means of stopped‐flow techniques. The specific rate of chain propagation, measured at the very short reaction times typical of this method, turned out to be ≈102 times higher for ethene than for propene; this suggests that diffusion limitations through the poly(ethylene) precipitating at longer reaction times may be responsible for the fact that the two monomers polymerize instead at comparable rates under “standard” conditions. It was also found that the concentration of active sites is significantly lower than the analytical Zr concentration.  相似文献   

8.
In this work catalytic ring-opening polymerization of cyclic esters in THF in the presence of benzyl alcohol is described. The polymerization is catalyzed by 1,3-bis(4-methoxyphenyl)imidazolium carbene, N-heterocyclic carbene (NHC). The ability of two different monomers, ?-caprolactone and L-lactide, to enter into the polymerization via ring-opening polymerization with NHCs as catalysts was evaluated. The plot of ln([M]0/[M]t) versus reaction time yielded a straight line indicating that the kinetics of polymerization of ?-caprolactone and L-lactide was first-order in monomer concentration. Moreover, a direct relation between the rate of ring-opening polymerization of ?-caprolactone and the catalyst concentration suggested a first-order dependence of the rate of polymerization on the catalyst concentration.  相似文献   

9.
A kind of novel bridged nonmetallocene catalysts was synthesized by the treatment of N,N‐imidazole and N,N‐phenylimidazole with n‐BuLi, and MCl4 (M = Ti, Zr) in THF. Those catalysts were performed for ethylene polymerization after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M ratio, pressure of monomer, and concentration of catalysts on ethylene polymerization behaviors were investigated in detail. Those results revealed that the catalyst system was favorable for ethylene polymerization with high catalytic activity. The polymer was characterized by 13C NMR, WAXD, GPC, and DSC. The result confirmed that the obtained polyethylene featured broad molecular weight distribution around 20, linear structure, and relative low melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 33–37, 2008  相似文献   

10.
Cationic group 4 metal alkyl complexes containing tetradentate Schiff base ligands, (acen) Zr(R)+ and (F6-acen) Zr(R)+, are prepared by protonolysis of suitable neutral dialkyl precursors. These complexes display electrophilic behavior and are moderately active ethylene polymerization catalysts in the presence of 1 molar equivalent of AlR3.  相似文献   

11.
The polymerization of ethylene was carried out with a novel in situ supported metallocene catalyst that eliminated the need for a supporting step before polymerization. In the absence of trimethyl aluminum (TMA), in situ supported Et[Ind]2ZrCl2 was not active, but the addition of TMA during polymerization activated the catalyst. Et[Ind]2Zr(CH3)2 was active even in the absence of TMA, whereas the addition of TMA during polymerization enhanced the catalytic activity. The polymerization‐rate profiles of the in situ supported metallocene catalysts did not show rate decay as a function of time. A polymerization mechanism for the in situ supported metallocene catalysts is proposed for this behavior. During polymerization, the in situ supported metallocene catalysts may deactivate, but homogeneous metallocene species present in the reactor may form new active sites and compensate for deactivated sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 462–468, 2000  相似文献   

12.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

13.
The initial active site concentrations, [C*]0, have been determined with CH3OT radiolabeling for the Cp2ZrCl2/MAO and CpZrCl3/MAO catalysts (Cp = η5 : cyclopentadienyl, MAO = methyl aluminoxane). Almost all the Zr are found to be catalytically active in 70°C ethylene polymerizations; [C*]0 = [Zr] and [C*]0 = 0.8[Zr] at Al/Zr ratios of 104 and 103, respectively. Lowering the temperature to 50°C and Al/Zr to 5.5 × 102 reduces [C*]0 to 0.2[Zr]. The rate constant of propagation at 70°C was calculated to be 1.6 × 103(M s)?1 for both catalysts at Al/Zr = 1.1 × 104; the values are decreased fivefold and tenfold, respectively, for the CpZrCl3 and Cp2ZrCl2 systems. The usage of 14CO to determine the propagating Zr–P species was investigated. With regard to the time of reaction of 14CO with the polymerization mixture, the initial phase is attributed to reversible CO complexation and reversible migratory insertion. The second slower phase may be due to the formation of enediolate. During the course of a batch polymerization the 14C radioactivity incorporated is small compared to the number of active sites found by CH3OT determination; it is only ca. 10% of [C*]0 at maximum rate of polymerization. Therefore, 14CO radiolabeling cannot be used to count C*.  相似文献   

14.
The ethylene polymerization reaction of a neutral nickel catalyst was studied by DFT calculations at the Becke3LYP/6-31G(d) level of theory. As in related cases a β-agostic bond stabilizes the nickel alkyl ground states. Transition states for the insertion of the olefin show a distinct α-agostic interaction, which has not been observed for late metal polymerization catalysts before. An ethylene-alkyl complex was identified as the resting state of the reaction. The overall barrier height of the reaction amounts to 17.54 kcal/mol, which slightly increases to 17.60 kcal/mol for the polymerization of deuterated ethylene. Therefore, a small positive kinetic isotope effect (kH/kD = 1.09) can be calculated, which is caused by the α-agostic interaction in the transition state. A comparison to other late metal based polymerization systems reveals that the ethylene coordination step of highly active catalysts is significantly lower in energy compared to catalysts which are only moderately active.  相似文献   

15.
16.
Although the bulk and solution polymerization of but-l ene with a very stable catalytic composition (TiCl3 AA + AlEt2Cl) allows avoidance of effects of monomer mass transfer, one observes nevertheless a limitation of polymerization rate attributable to a diminution of the monomer concentration in the neighbourhood of active centres because of dilution of monomer caused by the polymer formed and bonded at these active centres.The favourable effect of hydrogen can be attributed to a decrease of this polymer concentration as a result of transfer which detaches macromolecules and allows a higher concentration of the monomer. A method is proposed for determination of the real catalytic activity.  相似文献   

17.
The previously developed kinetic scheme for olefin polymerization reactions with heterogeneous Ziegler–Natta catalysts states that the catalysts have several types of active centers which have different activities, different stabilities, produce different types of polymer materials, and respond differently to reaction conditions. In the case of ethylene polymerization reactions, each type of center exhibits an unusual chemical feature: a growing polymer chain containing one ethylene unit, Ti—C2H5, is unusually stable and can decompose with the formation of the Ti—H bond. This paper examines quantitative kinetic ramifications of this chemical mechanism. Modeling of the complex kinetics scheme described in the Scheme demonstrates that it correctly and quantitatively predicts three most significant peculiarities of ethylene polymerization reactions, the high reaction order with respect to the ethylene concentration, reversible poisoning with hydrogen, and activation in the presence of α‐olefins.  相似文献   

18.
The quenching of polymerization with a chromium oxide catalyst by radioactive methanol 14CH3OH enables one to determine the concentration of propagation centers and then to calculate the rate constant of the propagation. The dependence of the concentration of propagation centers and the polymerization rate on reaction time, ethylene concentration, and temperature was investigated. The change of the concentration of propagation centers with the duration of polymerization was found to be responsible for the time dependence of the overall polymerization rate. The propagation reaction is of first order on ethylene concentration in the pressure range 2–25 kg/cm2. For catalysts of different composition, the temperature dependence of the overall polymerization rate and the propagation rate constant were determined, and the overall activation energy Eov and activation energy of the propagation state Ep were calculated. The difference between Eov and Ep is due to the change of the number of propagation centers with temperature. The variation of catalyst composition and preliminary reduction of the catalyst influence the shape of the temperature dependence of the propagation center concentration and change Eov.  相似文献   

19.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit a number of features that differentiate them from polymerization reactions of α olefins: (1) a relatively low ethylene reactivity, (2) markedly higher polymerization rates in the presence of α olefins, (3) a high reaction order with respect to ethylene concentration, and (4) a strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions1 provided the basis for a new kinetic scheme that postulates the equilibrium formation of Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts several new features of ethylene polymerization reactions, one being that chain initiation via insertion of any α-olefin molecule into the Ti H bond should proceed with an increased probability compared to that via ethylene insertion into the same bond. As a result, a significant fraction of ethylene/α-olefin copolymer chains should contain α-olefin units as the starting units. This article provides experimental data supporting this prediction on the basis of both a detailed structural analysis of co-oligomers formed in ethylene/1-pentene and ethylene/4-methyl-1-pentene copolymerization reactions and a spectroscopic analysis of chain ends in the copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4281–4294, 1999  相似文献   

20.
Kinetics of activation of methyl and benzyl metallocene precatalysts by benzhydrylium ions, tritylium ions, and triarylborane B(C6F5)3 were measured spectrophotometrically. The rate constants correlate linearly with the electrophilicity parameter E of the benzhydrylium and tritylium ions employed, allowing us to determine the σ‐nucleophilicities of the metal–carbon bond of several zirconocenes and titanocenes. Bridging, substitution, metal, and ligand effects on the rates of metal–alkyl bond cleavage (M=Zr, Ti) were studied and structure–reactivity correlations were used to predict the kinetics of generation of metallocenium ions pairs, which are active catalysts in polymerization reactions and are highly electrophilic Lewis acids in frustrated Lewis pair catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号