首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Polyolefin blends of proper morphology exhibit physical properties from high-extension, low-modulus elastomers to high-modulus tough resins. The morphology is controlled by rheology of the polymers, blending conditions and the use of graft polymer compatibilizers. The graft polymers were synthesized by polymerizing isotactic polypropylene with unsaturation in an ethylene-propylene-diene terpolymer. Graft copolymers result in smaller phase sizes and a more stable morphology for the blends. The development of polyolefin blends is reviewed with emphasis on materials with high concentration of elastomer phase.  相似文献   

2.
This paper deals with the preparation of PP/polysilsesquioxane blends and their study to investigate silsesquioxane dispersion, mechanical properties, thermal stability and combustion properties by means of a number of techniques, such as SEM, XRD, Rheology, TGA, DSC, Cone Calorimeter tests and LOI.Polysilsesquioxane with different organic groups (methyl, vinyl or phenyl) were used; both dispersion and final properties were found to be dependent on the silsesquioxane organic fraction type.The PP/polysilsesquioxane blends showed an increased thermoxidative stability and combustion resistance, in terms of lower rate of heat release.Higher mechanical performances were also achieved with PP/vinyl polysilsesquioxane, with higher elastic modulus as well as higher elongation at break.  相似文献   

3.
Polymer blends     
Small angle neutron scattering may be used to provide information on the thermodynamic basis of polymer-polymer miscibility via the temperature and concentration dependences of the observed interaction parameters. The kinetics of the phase separation process may also be followed and this in turn gives further information about the blend compatibility as well as providing tests of current theories of spinodal decomposition in binary mixtures.  相似文献   

4.
Two ternary miscible fluoro-polyimide blends have been identified. They are 6FDA-3,3′-6F-diamine/6FDA-4,4′- F - diamine/BTDA - 4,4′ - 6FDA blend and 6FDA - 3,3′ - 6F - diamine/6FDA - 4,4′ - 6F - diamine/ODPA - PMDA - 4,4′-6F-diamine blend (6FDA is 2,2′-bis(3,4′-dicarboxy- phenyl)hexafluoro propane dianhydride, 6F-diamine is 2,2′-bis(3-aminophenyl) hexafluoro propane). Their miscibility probably arises from the fact that their diamine parts have hexafluoro isopropylidene groups, their dianhydride parts have similar bond angle, space, rigidity and length. Several 6FDA-polyimides and PCTG 5445 (glycol-modified polycyclohexanedimethanolterephthalate) form- ing miscible blends have also been discovered. These surprising results suggest that hexafluoro-isopropylidene-group containing polyimides are quite intermolecular active and the 1,4-cyclohexane dimethanol component in PCTG 5445 may also offer unique miscibility capability. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Various morphologies can be realized via processing of incompatible polymer blends such as droplets or fibers in a matrix and stratified or cocontinuous structures as is shown for the model system polyethylene/polystyrene The structures induced are usually intrinsically unstable. Modelling of extrusion processes and continuous mixers yields expressions for the shear rate and shear stress but also for the limited residence time and the number of reorientations. These results could be combined with detailed knowledge of respectively distributive and dispersive mixing processes to predict the development of various morphologies as a function of time. Control of morphology is of utmost importance. In the case of droplets in a matrix, usually encountered in toughening of glassy polymers, the use of compatibilizers and/or reactions at the interphases is utilized. However, in designing specific morphologies i.e. structured polymer blends, fixation of intermediate morphologies before final processing is a prerequisite. Some preliminary results will be presented.  相似文献   

6.
Styrene/maleic anhydride (SMA) and styrene/acrylonitrile (SAN) copolymers have previously been shown to form miscible blends when the MA and AN contents do not differ too greatly. It is shown here that this is the result of a weak exothermic interaction between the MA and AN units by measuring the heats of mixing for appropriate liquid analogs of the various monomer units. The region of copolymer compositions for miscibility of SMA-SAN blends is predicted from the Sanchez-Lacombe mixture theory using net interaction parameters calculated from the analog calorimetry results via a simple binary interaction model for copolymers. Lower critical solution temperature behavior was observed for blends of copolymers having compositions near the edge of the miscibility region. Various glass transition, volumetric, and FTIR results are discussed in terms of the interactions observed.  相似文献   

7.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

8.
The reactive compatibilization of ethylene-propylene-diene (EPDM)-based dissimilar elastomer blends has been investigated in terms of mechanical properties and swelling degree. The use of mercapto-functionalized copolymers resulted in an improvement of mechanical properties of natural rubber-EPDM blends. The mercapto-groups are able to react with the carbon-carbon double bonds of the high diene rubber, resulting in a good interaction between phases. These interactions were confirmed by the amount of insoluble material obtained in non-vulcanized blends. From dynamic mechanical properties and swelling degree, one can suggest a covulcanization process in these blends cured with sulfur-based system. Blends composed by nitrile rubber with EPDM displayed good results in terms of mechanical properties when mercapto-functionalized EVA was employed instead of functionalized EPDM, probably because of the higher polarity of the former associated to its lower viscosity. Additionally, an improvement on mechanical properties was also achieved by using EPDM functionalized with mercapto or anhydride groups in combination with nitrile rubber functionalized with epoxy or oxazoline groups.  相似文献   

9.
The general principles of thermodynamic equilibrium in binary liquid systems are reviewed briefly, and extended to quasi-binary mixtures of polydisperse polymers. Molecular models allowing actual phase behaviour to be discussed in terms of molecular parameters are exposed to data on the system polystyrene/polyvinylmethylether. Disparity in size and share between the repeating units must be introduced to obtain reasonable agreement between theory and experiment. The neccessary introduction of the molar-mass distribution detracts from this agreement which makes clear that other aspects exist that must be taken into account. For example, cross association between repeating units has a marked effect on phase behaviour. Blends are subject to two kinds of thermodynamic aging which lead either to considerable mutual solubility in supposedly immiscible blends, or to metastable equilibria transforming into states of lower Gibbs energy. In both cases physical proerties of the blend will change with time.  相似文献   

10.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed.  相似文献   

11.
Blends of polyolefins are reviewed from the perspective of a historic evolution of technology. Blends of polyethylenes, polypropylene, and ethylene-propylene copolymers, with either a commodity, engineering or specialty resin, are discussed.  相似文献   

12.
13.
FTIR spectra of blends of lightly sulfonated polystyrene (PS-SSA) with polyurethanes (PU) containing a tertiary nitrogen in the chain extender were recorded. These blends exhibit a two-phase behavior, but the individual components are not phase separated. Earlier dynamic mechanical studies suggested the occurrence of proton transfer from the sulfonic acid to the tertiary nitrogen, which enhanced the miscibility via ionic interactions and resulted in the formation of a miscible blend between the PS-SSA and the hard segment of the PU, the soft segment being excluded. FTIR studies of these blends now confirm the proton transfer mechanism. A new absorption band at 3428 cm?1 corresponds to a stretching vibration of an N+?H bond. The 1012 cm?1 band of the SO3H group, which strongly depends on the degree of protonation, shifts to lower frequency. The symmetric stretching vibration of the SO group, which occurred at 1043 cm?1, shifts to lower frequency as well, suggesting a lower polarization of the S? O dipole due to the removal of H+.  相似文献   

14.
Two petroleum-derived aromatic hydrocarbon resins (HRs) were blended (1:1) with expanded polystyrene (EPS) waste and small amounts (up to 10 mass%) of poly(vinyl chloride) (PVC) to increase both the lustrous carbon (LC) yield and softening point of the blends without any deterioration of their rheological characteristics. The blends were prepared and tested for LC content, softening points, shear stress and apparent viscosity to check their applicability as LC precursors under industrial conditions. The properties of polystyrene compositions with bitumen fractions depend primarily on composition and viscosity of oil fraction. Additional modification by poly(vinyl chloride) improves the blends’ properties, like bright coal content, softening point and viscosity, and opens new possibilities of plastics’ wastes utilization.  相似文献   

15.
This study reports the microstructure characteristic and compressive strength of multi-blended cement under different curing methods. Fly ash, ground bottom ash, and undensified silica fume were used to replace part of cement at 50 % by mass. Mortar and paste specimens were cured in air at ambient temperature, water at 25, 40, and 60 °C and sealed with plastic sheeting for 28 days. In addition, these specimens were cured in an autoclave for 6, 9, and 12 h. Results indicated that the compressive strength of multi-blended mixes containing silica fume 10 % by mass cured with plastic sealed and cured in water at 25 and 40 °C was similar to or higher than the corresponding Portland cement control at 28 day. Moreover, the mixes containing silica fume 10 % by mass cured in water at 60 °C had higher compressive strength than Portland cement control. X-ray diffraction and thermogravimetry results confirmed that there was increased pozzolanic reaction with increasing silica fume content which relates to the increasing in strength. For autoclaved curing, the compressive strength of multi-blended cement specimens with silica fume (total of 50 % replacement) was noticeably higher than control Portland cement mix and was highest when autoclaving time was 9 h. X-ray diffraction results showed the pattern of 0.9, 1.1, and 1.4 nm tobermorite crystalline phases as the main product of this curing. Thermogravimetry results showed dehydration of 1.4 nm tobermorite and 1.1 nm tobermorite at about 80–90 and 135–150 °C, respectively. Tobermorite (also shown by scanning electron microscope) thereby as a result lead to significant compressive strength improvement in the short time of autoclaved curing.  相似文献   

16.
Among polyamide based blends, PA/PP alloys show interesting technological properties due to low moisture absorption. A model class of PA6/PP homopolymer blends, compatibilized through the addition of PP-g-MA is described in the present work; the experimentally obtained morphologies are related to predictive equations for co-continuity, at given rheological conditions. PP/compatibilizer ratio = 4/1 is found to impart an optimum level of phase dispersion. Moisture absorption, dimensional stability, mechanical properties and morphology are related with blend composition.  相似文献   

17.
4,4-bismaleimidophenyl methane (BM) and 3,3-bismaleimidophenyl sulfone (BS) were blended in solution using weight ratios 31 (MS31), 21 (MS21), 11 (MS11), 12 (MS12) and 13 (MS13). Chain extended bismaleimide resins were also prepared by treating BS/BM with 4,4-diaminodiphenyl ether in molar ratios of 10.3 (BM-E and BS-E resins). These resins were also blended with bismaleimides and the curing characteristics were evaluated by differential scanning calorimetry. Increase in BM content in BMBS blends or increase in chain extended bismaleimide content in BM-EBS or BS-E BM blends resulted in a reduction of melting and curing temperatures. Indication about the extent of cross-linking was obtained from solubility measurements (in DMF) of isothermally cured resins (180 °C, lh and 220 °C, lh in an air oven). Thermogravimetric analysis of samples isothermally cured at 180 °C and 220 °C (lh each) was carried out in nitrogen atmosphere. Improvement in thermal stability of chain extended bismaleimides was observed on blending.
Zusammenfassung 4,4-Bismalimidophenyl-methan (BM) und 3,3-Bismalimidophenyl-sulfon (BS) wurden in Lösung in den Gewichtsverhältnissen 31 (MS31), 21 (MS21), 11 (MS11), 12 (MS12) und 13 (MS13) gemischt. Auch kettenpolymerisierten Bismalimid-Harze wurden durch Behandlung von BS/BM mit Diaminodiphenylether im Molverhältnis 10,3 dargestellt (BM-E- und BS-E-Harze). Die Kennwerte der Aushärtung von Mischungen dieser Harze mit den Bismalimiden wurden mittels DSC ermittelt. Eine Erhöhung des BM-Gehaltes in den BM BS-Mischungen oder des Gehaltes der BM-E BS oder BS-E-Mischungen an kettenpolymerisierten Bismalimiden führt zu einer Erniedrigung der Schmelz- und Aushärtetemperaturen. Hinweise über den Vernetzungsgrad wurden aus Löslichkeitsmessungen (in DMF) von Isotherm (je 1 Stunde bei 180 und 220 °C in Luft) gehärteten Harzen erhalten. Die thermogravimetrische Analyse der Isotherm bei 180 bzw. 220 °C 1 Stunde ausgehärteten Proben wurde in Stickstoffatmosphäre ausgeführt. Die thermische Stabilität der Bismalimide wird durch Verschneiden verbessert.

4,4-- () 3,3-- () 31 (MC 31), 21 (MC 21), 11 (MC 11), 12 (MC 12) 13 (MC13). - / 4,4- 10,3 ( - C-). - . - - - - , . ( 1 180 220°) . . - .


The financial assistance provided by Department of Science and Technology is gratefully acknowledged.  相似文献   

18.
The effect of temperature on dynamic viscoelastic measurements of miscible poly (vinyl chloride) (PVC)/ethylene‐vinyl acetate–carbon monoxide terpolymer (EVA‐CO) and immiscible PVC/high‐density polyethylene (HDPE) and PVC/chlorinated polyethylene (CPE) molten blends is discussed. PVC plasticized with di(2 ethyl hexyl) phthalate (PVC/DOP) and CaCO3 filled HDPE (HDPE/CaCO3) are also considered for comparison purposes. Thermorheological complexity is analyzed using two time–temperature superposition methods: double logarithmic plots of storage modulus, G′, vs. loss modulus, G″, and loss tangent, tan δ, vs. complex modulus, G*, plots. Both methods reveal that miscible PVC/EVA‐CO and PVC/DOP systems are thermorheologically complex, which is explained by the capacity of PVC to form microdomains or crystallites during mixing and following cooling of the blends. For immiscible PVC/HDPE and PVC/CPE blends the results of log G′ vs. log G″ show temperature independence. However, when tan δ vs. log G* plots are used, the immiscible blends are shown to be thermorheologically complex, indicating that the morphology observed by microscopy and constitued by a PVC phase dispersed in a HDPE or CPE matrix, is reflected by this rheological technique. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 469–477, 2000  相似文献   

19.
Theoretical models of the interfacial tension coefficient in polymer blends, v12, were evaluated. A new working relation was derived that makes it possible to compute v12 from the chemical structure of two polymers. The calculations involve determination of the dispersive, polar and hydrogen-bonding parts of the solubility parameter from the tabulated group and bond contributions. The computed values of v12 for 46 blends were found to follow the experimental ones with a reasonable scatter of ± 36%. Next, the experimental methods of v12-measurements were critically examined. Although many have been developed for low viscosity Newtonian fluids, most are irrelevant to industrial polymeric systems. For the present studies two were selected. Values of v12 were measured using the so-called “capillary breakup method,” and a newly developed method based on the retraction rate of deformed drop.  相似文献   

20.
Coal-tar pitch was modified by addition of polystyrene, poly(ethylene terephthalate), unsaturated polyester and coumarone-indene resin. The optimum conditions for production of homogeneous binary pitch-polymer blends containing 10% w/w of the polymer were established. Softening points, contents of toluene and quinoline-insoluble matters and rheological properties of the blends were determined. The yield of solid fraction in semi-coking the blends was also found. The effect of polymers on the coal-tar pitch blend properties was evaluated. Some pitch-polymer blends were then carbonized to carbon sorbents used for purification of water and wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号