首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric carbon nitride (PCN) has been widely used as a metal-free photocatalyst for solar hydrogen generation from water. However, rapid charge carrier recombination and sluggish water catalysis kinetics have greatly limited its photocatalytic performance for overall water splitting. Herein, a single-atom Ni terminating agent was introduced to coordinate with the heptazine units of PCN to create new hybrid orbitals. Both theoretical calculation and experimental evidence revealed that the new hybrid orbitals synergistically broadened visible light absorption via a metal-to-ligand charge transfer (MLCT) process, and accelerated the separation and transfer of photoexcited electrons and holes. The obtained single-atom Ni terminated PCN (PCNNi), without an additional cocatalyst loading, realized efficient photocatalytic overall water splitting into easily-separated gas-product H2 and liquid-product H2O2 under visible light, with evolution rates reaching 26.6 and 24.0 μmol g−1 h−1, respectively. It was indicated that single-atom Ni and the neighboring C atom served as water oxidation and reduction active sites, respectively, for overall water splitting via a two-electron reaction pathway.

Single-atom Ni terminating agent is introduced to coordinate with sp2 or sp3 N atoms in the heptazine units of PCN, realizing visible-light photocatalytic overall water splitting to H2O2 and H2 without additional cocatalyst.  相似文献   

2.
Precise manipulation of the reactive site spatial distribution in plasmonic metal/semiconductor photocatalysts is crucial to their photocatalytic performance, but the construction of Janus nanostructures through symmetry-breaking synthesis remains a significant challenge. Here we demonstrate a synthetic strategy for the selective growth of a CeO2 semi-shell on Au nanospheres (NSs) to fabricate Janus Au NS/CeO2 nanostructures with the assistance of a SiO2 hard template and autoredox reaction between Ag+ ions and a ceria precursor. The obtained Janus nanostructures possess a spatially separated architecture and exhibit excellent photocatalytic performance toward N2 photofixation under visible-light illumination. In this scenario, N2 molecules are reduced by hot electrons on the CeO2 semi-shell, while hole scavengers are consumed by hot holes on the exposed Au NS surface, greatly promoting the charge carrier separation. Moreover, the exposed Au NS surface in the Janus structures offers an additional opportunity for the fabrication of ternary Janus noble metal/Au NS/CeO2 nanostructures. This work highlights the genuine superiority of the spatially separated nanoarchitectures in the photocatalytic reaction, offering instructive guidance for the design and construction of novel plasmonic photocatalysts.

We demonstrate a synthetic strategy to selectively grow a CeO2 semi-shell on Au nanospheres through the symmetry-breaking synthesis. The asymmetric nanostructures facilitate the charge carrier separation during the visible-light N2 photofixation.  相似文献   

3.
Synthesis of arylboronates via borylation of C–C σ-bonds of aryl ketones was achieved by the combined use of photoenergy and a Rh catalyst. The cooperative system enables α-cleavage of photoexcited ketones to generate aroyl radicals via the Norrish type I reaction, which are successively decarbonylated and borylated with the rhodium catalyst. This work establishes a new catalytic cycle merging the Norrish type I reaction and Rh catalysis and demonstrates the new synthetic utility of aryl ketones as aryl sources for intermolecular arylation reactions.

Synthesis of arylboronates via borylation of C–C σ-bonds of aryl ketones was achieved by the combined use of photoenergy and a Rh catalyst.  相似文献   

4.
Directed transfer of carriers, akin to excited charges in photosynthesis, in semiconductors by structural design is challenging. Here, TiO2 nanosheets with interlayered sp2 carbon and titanium vacancies are obtained by low-temperature controlled oxidation calcination. The directed transfer of carriers from the excited position to Ti-vacancies to interlayered carbon is investigated and proven to greatly increase the charge transport efficiency. The TiO2/C obtained demonstrates excellent photocatalytic and photoelectrochemical activity and significant lithium/sodium ion storage performance. Further theoretical calculations reveal that the directional excited position/Ti-vacancies/interlayered carbon facilitate the spatial inside-out cascade electron transfer, resulting in high charge transfer kinetics.

Directional charge transfer in TiO2 nanosheets is achieved by design of TiO2 lattice-Ti vacancy-interlayered sp2 carbon at the interface.  相似文献   

5.
The core factors affecting the efficiency of photocatalysis are predominantly centered on controllable modulation of anisotropic spatial charge separation/transfer and regulating vectorial charge transport pathways in photoredox catalysis, yet it still meets with limited success. Herein, we first conceptually demonstrate the rational design of unidirectional cascade charge transfer channels over transition metal chalcogenide nanosheets (TMC NSs: ZnIn2S4, CdS, CdIn2S4, and In2S3), which is synergistically enabled by a solid-state non-conjugated polymer, i.e., poly(diallyldimethyl ammonium chloride) (PDDA), and MXene quantum dots (MQDs). In such elaborately designed photosystems, an ultrathin PDDA layer functions as an intermediate charge transport mediator to relay the directional electron transfer from TMC NSs to MQDs that serve as the ultimate electron traps, resulting in a considerably boosted charge separation/migration efficiency. The suitable energy level alignment between TMC NSs and MQDs, concurrent electron-withdrawing capabilities of the ultrathin PDDA interim layer and MQDs, and the charge transport cascade endow the self-assembled TMC/PDDA/MQD heterostructured photosystems with conspicuously improved photoactivities toward anaerobic selective reduction of nitroaromatics to amino derivatives and photocatalytic hydrogen evolution under visible light irradiation. Furthermore, we ascertain that this concept of constructing a charge transfer cascade in such TMC-insulating polymer-MQD photosystems is universal. Our work would afford novel insights into smart design of spatial vectorial charge transport pathways by precise interface modulation via non-conjugated polymers for solar energy conversion.

Electron relay of interim polymer layer boosts photocatalytic organic transformation.  相似文献   

6.
We report the synthesis and characterization of a 2D semiconductive and photoconductive coordination polymer. [Zn(TPPB)(Cl2)]·H2O (1) (TPPB = N1,N1,N4,N4-tetrakis(4-(pyridin-4-yl)phenyl)benzene-1,4-diamine) consists of a TPPB redox-active linker with bis(triarylamine) as the core. It consists of two redox sites connected with a benzene ring as a bridge. Thus, this forms an extended conjugation pathway when the TPPB ligand is coordinated with the Zn2+ metal ions. The single crystal conductivity measurement revealed conductivity of 1 to be in the range of 0.83 to 1.9 S cm−1. Band structure analysis predicted that 1 is a semiconductor from the delocalization of electronic transport in the network. The computational calculations show the difference in charge distribution between holes and electrons, which led to spatial separation. This implies a long charge carrier lifetime as indicated by lifetime measurement. Incorporating a bis(triarylamine)-based redox-active linker could lead to a new semiconductive scaffold material with photocatalytic applications.

This work highlights the importance of bis(triarylamine) redox-active linker in promoting the semiconductive and photoconductive behavior of a 2D zinc-based coordination polymer.  相似文献   

7.
We report an organophotocatalytic, N–CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for flow processing. This allowed O2 to be harnessed as a sustainable oxidant for late-stage photocatalytic N–CH3 oxidations of complex natural products and active pharmaceutical ingredients bearing functional groups not tolerated by previous methods. The organophotocatalytic gas–liquid flow process affords cleaner reactions than in batch mode, in short residence times of 13.5 min and productivities of up to 0.65 g per day. Spectroscopic and computational mechanistic studies showed that catalyst derivatization not only enhanced solubility of the new catalyst compared to poorly-soluble DCA, but profoundly diverted the photocatalytic mechanism from singlet electron transfer (SET) reductive quenching with amines toward energy transfer (EnT) with O2.

An N–CH3-selective trialkylamine oxidation to N-formamides is reported in continuous flow using gaseous O2. A novel, enhanced-solubility dicyanoanthracene organophotocatalyst switched the photochemical mechanism from electron to energy transfer.  相似文献   

8.
Besides gene-editing, the CRISPR/Cas12a system has also been widely used in in vitro biosensing, but its applications in live-cell biosensing are rare. One reason is lacking appropriate carriers to synchronously deliver all components of the CRISPR/Cas12a system into living cells. Herein, we demonstrate that MnO2 nanosheets are an excellent carrier of CRISPR/Cas12a due to the two important roles played by them. Through a simple mixing operation, all components of the CRISPR/Cas12a system can be loaded on MnO2 nanosheets and thus synchronously delivered into cells. Intracellular glutathione (GSH)-induced decomposition of MnO2 nanosheets not only results in the rapid release of the CRISPR/Cas12a system in cells but also provides Mn2+ as an accelerator to promote CRISPR/Cas12a-based biosensing of intracellular targets. Due to the merits of highly efficient delivery, rapid intracellular release, and the accelerated signal output reaction, MnO2 nanosheets work better than commercial liposome carriers in live-cell biosensing analysis of survivin messenger RNA (mRNA), producing much brighter fluorescence images in a shorter time. The use of MnO2 nanosheets might provide a good carrier for different CRISPR/Cas systems and achieve the rapid and sensitive live-cell biosensing analysis of different intracellular targets, thus paving a promising way to promote the applications of CRISPR/Cas systems in living cells.

Herein, we demonstrate that MnO2 nanosheets are an excellent carrier of CRISPR/Cas12a due to the two important roles played by them.  相似文献   

9.
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.

This perspective briefly reviews recently developed water splitting electrocatalyst materials and discusses their utilization as cocatalysts for photocatalytic and photoelectrochemical water splitting systems.  相似文献   

10.
Stimuli-responsive transmembrane ion carriers allow for targeted and controllable transport activity, with potential applications as therapeutics for channelopathies and cancer, and in fundamental studies into ion transport phenomena. These applications require OFF–ON activation from a fully inactive state which does not exhibit background activity, but this remains challenging to achieve with synthetic transport systems. Here we introduce a novel mechanism for photo-gating mobile ion carriers, which involves modulating the mobility of the carriers within the lipid bilayer membrane. By appending a membrane-targeting anchor to the carrier using a photo-cleavable linker, the carrier''s ion transport activity is fully switched off by suppressing its ability to shuttle between the two aqueous-membrane interfaces of the bilayer. The system can be reactivated rapidly in situ within the membrane by photo-triggered cleavage of the anchor to release the mobile ion carrier. This approach does not involve direct functionalization of the ion binding site of the carrier, and so does not require the de novo design of novel ion binding motifs to implement the photo-caging of activity. This work demonstrates that controlling the mobility of artificial transport systems enables precise control over activity, opening up new avenues for spatio-temporally targeted ionophores.

Photo-gated anion transport is achieved by modulating the mobility of mobile carriers within a lipid bilayer membrane, using a photo-cleavable membrane anchor. This enables in situ, off–on activation of transport in vesicles.  相似文献   

11.
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C–H metalation ortho to the strongly electron-withdrawing nitro group.

Rh(iii)-catalyzed ortho-alkynylation of nitro-(hetero)arenes leads to a wide variety of alkynylated nitroarenes via a turnover-limiting electrophilic C–H ortho-metalation.  相似文献   

12.
Diamidobenzene ligands are a prominent class of redox-active ligands owing to their electron reservoir behaviour, as well as the possibility of tuning the steric and the electronic properties of such ligands through the substituents on the N-atoms of the ligands. In this contribution, we present Rh(iii) complexes with four differently substituted diamidobenzene ligands. By using a combination of crystallography, NMR spectroscopy, electrochemistry, UV-vis-NIR/EPR spectroelectrochemistry, and quantum chemical calculations we show that the substituents on the ligands have a profound influence on the bonding, donor, electrochemical and spectroscopic properties of the Rh complexes. We present, for the first time, design strategies for the isolation of mononuclear Rh(ii) metallates whose redox potentials span across more than 850 mV. These Rh(ii) metallates undergo typical metalloradical reactivity such as activation of O2 and C–Cl bond activations. Additionally, we also show that the substituents on the ligands dictate the one versus two electron nature of the oxidation steps of the Rh complexes. Furthermore, the oxidative reactivity of the metal complexes with a [CH3]+ source leads to the isolation of a unprecedented, homobimetallic, heterovalent complex featuring a novel π-bonded rhodio-o-diiminoquionone. Our results thus reveal several new potentials of the diamidobenzene ligand class in organometallic reactivity and small molecule activation with potential relevance for catalysis.

Diamidobenzene ligands are versatile platforms in organometallic Rh-chemistry. They allow the isolation of tunable mononuclear ate-complexes, and the formation of a unprecedented homobimetallic, heterovalent complex.  相似文献   

13.
Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)–acoustic phonon bandgap, (2) enhances the electron–LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier–phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron–LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping.

Mn doping modulates the hot carrier dynamics in all-inorganic lead halide perovskite nanocrystals according to the excitation energy.  相似文献   

14.
A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co–H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst.

A dual catalytic system based on earth-abundant elements reduces aryl olefins to alkanes in aqueous media under visible light. Mechanistic studies allow for rational tunning of the system for the selective reduction of aryl olefins vs ketones and vice versa.  相似文献   

15.
Design of active catalysts for chemical utilization of methane under mild conditions is of great importance, but remains a challenging task. Here, we prepared a Ag/AgCl with SiO2 coating (Ag/AgCl@SiO2) photocatalyst for methane oxidation to carbon monoxide. High carbon monoxide production (2.3 μmol h−1) and high selectivity (73%) were achieved. SiO2 plays a key role in the superior performance by increasing the lifetime of the photogenerated charge carriers. Based on a set of semi in situ infrared spectroscopy, electron paramagnetic resonance, and electronic property characterization studies, it is revealed that CH4 is effectively and selectively oxidized to CO by the in situ formation of singlet 1O2via the key intermediate of COOH*. Further study showed that the Ag/AgCl@SiO2 catalyst could also drive valuable conversion using real sunlight under ambient conditions. As far we know, this is the first work on the application of SiO2 modified Ag/AgCl in the methane oxidation reaction.

The Ag/AgCl@SiO2 catalyst exhibits excellent photocatalytic activity in selective aerobic oxidation of methane to carbon monoxide with high selectivity, and extended real light simulation feasibility shows potential in practical application.  相似文献   

16.
We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides. The judicious choice of different photocatalyst quenchers allowed us to select at will between mechanistically divergent processes. The two reaction manifolds, an ipso-substitution path proceeding via radical coupling and a Minisci-type addition, enabled selective access to regioisomeric C4 or C2 benzylated pyridines, respectively. Mechanistic investigations shed light on the origin of the chemoselectivity switch.

We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides.  相似文献   

17.
Rh(i) complex catalyzed dimerization of ene-vinylidenecyclopropanes took place smoothly to construct a series of products containing spiro[4,5]decane skeletons featuring a simple operation procedure, mild reaction conditions, and good functional group tolerance. In this paper, the combination of experimental and computational studies reveals a counterion-assisted Rh(i)–Rh(iii)–Rh(v)–Rh(iii)–Rh(i) catalytic cycle involving tandem oxidative cyclometallation/reductive elimination/selective oxidative addition/selective reductive elimination/reductive elimination steps; in addition, a pentavalent spiro-rhodium intermediate is identified as the key intermediate in this dimerization reaction upon DFT calculation.

Rh(i) complex catalyzed dimerization of ene-vinylidenecyclopropanes has been demonstrated, and its reaction mechanism is revealed based on a series of mechanistic studies.  相似文献   

18.
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.

Stereodivergent synthesis of β-iodoenol carbamates was achieved via a photocatalytic three-component coupling reaction of ethynylbenziodoxolones, CO2 and amines.  相似文献   

19.
The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst–substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.

The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques.  相似文献   

20.
The instability of cesium lead bromide (CsPbBr3) nanocrystals (NCs) in polar solvents has hampered their use in photocatalysis. We have now succeeded in synthesizing CsPbBr3–CdS heterostructures with improved stability and photocatalytic performance. While the CdS deposition provides solvent stability, the parent CsPbBr3 in the heterostructure harvests photons to generate charge carriers. This heterostructure exhibits longer emission lifetime (τave = 47 ns) than pristine CsPbBr3 (τave = 7 ns), indicating passivation of surface defects. We employed ethyl viologen (EV2+) as a probe molecule to elucidate excited state interactions and interfacial electron transfer of CsPbBr3–CdS NCs in toluene/ethanol mixed solvent. The electron transfer rate constant as obtained from transient absorption spectroscopy was 9.5 × 1010 s−1 and the quantum efficiency of ethyl viologen reduction (ΦEV+˙) was found to be 8.4% under visible light excitation. The Fermi level equilibration between CsPbBr3–CdS and EV2+/EV+˙ redox couple has allowed us to estimate the apparent conduction band energy of the heterostructure as −0.365 V vs. NHE. The insights into effective utilization of perovskite nanocrystals built around a quasi-type II heterostructures pave the way towards effective utilization in photocatalytic reduction and oxidation processes.

The insights into effective utilization of perovskite nanocrystals built around a CsPbBr3–CdS heterostructure pave the way towards their utilization in photocatalytic reduction and oxidation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号