首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agglomerated nanorods of hydroxyapatite have been synthesized using monetite as a precursor in a NaOH solution. Monetite consisting of nanosheets has been successfully synthesized by a one-step microwave-assisted method using CaCl(2).2.5H(2)O, NaH(2)PO(4), and sodium dodecyl sulfate (SDS) in water/ethylene glycol (EG) mixed solvents. The effects of the molar ratio of water to EG and the reaction time on the products were investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FTIR).  相似文献   

2.
Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH3COO)2·4H2O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 °C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 °C. The products were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of β-Ni(OH)2 nanosheets was investigated through the cyclic voltammogram (CV) measurement.  相似文献   

3.
A nickel nanowire catalyst was prepared by a hard template method,and characterized by transmission electron microscopy (TEM),N2 physical adsorption,X-ray photoelectron spectrometry (XPS),X-ray diffraction (XRD) and H2 temperature-programmed reduction (H2-TPR).The catalytic properties of the nanowire catalyst in the partial oxidation of methane to syngas were compared with a metallic Ni catalyst which was prepared with nickel sponge.The characterization results showed that the nickel nanowire catalyst had high specific surface area and there was more NiO phase in the nickel nanowire catalyst than in the metallic Ni catalyst.The reaction results showed that the nickel nanowire catalyst had high CH4 conversion and selectivities for H2 and CO under low space velocity.  相似文献   

4.
A novel tetraethylenepentamine (TEPA)-directed method has been successfully developed for the controlled synthesis of ZnSe particles with distinctive morphologies, including nanobelts, nanowires, and hierarchically solid/hollow spheres. These structures, self-assembled from nanobelts and nanorods, have been synthesized by adjusting the reaction parameters, such as the solvent composition, reaction temperature, and the aging time. Results reveal that the volume ratio of H2O and TEPA plays a crucial role in the final morphology of ZnSe products. The mechanisms of phase formation and morphology control of ZnSe particles are proposed and discussed in detail. The products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, Raman spectra and luminescence spectroscopy. The as-prepared ZnSe nanoparticles display shape- and size-dependent photoluminescent optical properties. This is the first time to report preparation of complex hollow structures of ZnSe crystals with hierarchy through a simple solution-based route. This synthetic route is designed to exploit a new H2O/TEPA/N2H4H2O system possibly for the preparation of other semiconductor nanomaterials.  相似文献   

5.
This study focuses on the preparation and characterization of nickel oxide nanoparticles from nickel(II) Schiff base complexes as new precursors. At first nickel(II) complexes [Ni(salophen)] and [Ni(Me-salophen)] were synthesized and characterized by elemental analyses and FT-IR spectroscopy. Then NiO nanoparticles were prepared by solid-state thermal decomposition at 550 ºC for 3.5 h. The FT-IR spectrum confirmed the composition of products. The crystalline structures and morphology of products were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD results revealed that the obtained products were nickel oxide. SEM and TEM images demonstrated that the NiO nanoparticles have uniform shape with size between 35 and 70 nm.  相似文献   

6.
Thermal decomposition process has been developed to synthesize nickel oxide (NiO) nanoclusters via the reaction between a new precursor, nickel oxalate [Ni(O4C2)(H2O)4] and oleylamine (C18H37N). The combination of triphenylphosphine (C18H15P) and C18H37N were added as surfactants to control the particle size. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible (UV–Vis) spectroscopy. The synthesized NiO nanoclusters have a cubic structure with average size 2–10 nm.  相似文献   

7.
In this paper, LaPO(4) nanorods have been successfully synthesized via a simple water-ethyleneglycol (H(2)O-EG) mixed-solvothermal route, employing lanthanum nitrate (La(NO(3))(3)·xH(2)O) as a La(3+) ion source and monobasic sodium phosphate (NaH(2)PO(4)·2H(2)O) as a PO(4)(3-) ion source. The as-obtained products were characterized by means of X-ray powder diffraction (XRD), energy dispersive spectrometry (EDS), (high resolution) transmission electron microscopy (HR/TEM), selected area electron diffraction (SAED) and field emission scanning electron microscopy (FESEM). Some factors influencing the formation of LaPO(4) nanorods, including the reaction temperature, the volume ratio of water/EG and the original amount of H(2)PO(4)(-) ions, were investigated. Experiments showed that the volume ratio of water/EG and the original amount of H(2)PO(4)(-) ions could markedly affect the morphology of the final product.  相似文献   

8.
以Mg(NO3)2和Ni(NO3)2为原料,用甘氨酸作为氧化剂,采用燃烧法制备约50nm的混合金属氧化物前躯体,再在H2气氛保护下的管式炉中用CaH2还原制备MgNi2合金。利用X-射线粉末衍射仪、透射电子显微镜、扫描电子显微镜对样品的成分、晶体结构和形貌进行了分析,产品为粒度200nm左右的单相MgNi2合金粉末。制备MgNi2合金的最佳反应温度为850℃,反应时间为3h,制备混合氧化物前驱体时甘氨酸和硝酸根(Gly/NO3^-)的最佳配比为0.15。  相似文献   

9.
Reactions in pure and mixed films of C(2)H(6) and CD(3)CN deposited on a Au surface at 35 K have been induced by low-energy electrons and investigated by Thermal Desorption Spectrometry (TDS). The incident electron energy (E(0)) was varied between 5 and 16 eV and a number of different products were identified. Beside the main products, CD(4), CD(3)H, and C(2)D(6), molecules resulting from atom scrambling during radical chain reactions (C(2)H(5)D) and recombination products (CD(3)CD(2)CN and C(2)H(5)CD(3)) were identified while others were characteristically absent. The quantity of the different products varied with E(0). The observed electron-driven processes are in accord with previous findings from gas phase experiments on dissociative electron attachment and electron impact ionization. On this basis, reaction mechanisms leading to the formation of the observed products are suggested for different ranges of E(0).  相似文献   

10.
Mesoporous semimetal bismuth film and magnetic metal nickel and cobalt thin films have been electrodeposited from hexagonal or lamellar structured lyotropic liquid crystalline phases with polyoxyethylene surfactant. The liquid crystalline templates are characterized by low-angle X-ray diffraction (XRD) and polarized-light optical microscopy (POM). The metal films are characterized by low-angle and wide-angle XRD, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The magnetic measurements on the mesoporous nickel and cobalt films are shown to have higher coercivity (Hc) than the nonporous polycrystalline films.  相似文献   

11.
A novel nickel beta-diketonate adduct, Ni(tta)2.tmeda, has been synthesized using 2-thenoyltrifluoroacetone as the beta-diketonate and N,N,N,'N'-tetramethylethylendiamine as the Lewis base. It has been characterized by elemental analyses, IR, 1H NMR, 13C NMR spectroscopy and single-crystal X-ray diffraction studies. Physical and thermal properties of Ni(tta)2.tmeda precursor have been also extensively investigated. Its efficacy as a metal-organic chemical vapour deposition (MOCVD) precursor for the growth of nickel oxide films has been fully tested by applying it to the deposition of NiO films on quartz substrate. NiO thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy and UV spectroscopy.  相似文献   

12.
以硝酸镍和偏硅酸钠为原料,采用并流共沉淀和氢气还原-钝化的方法制备了Ni/Si O2催化剂,通过BET、XRD、H2-TPD、NH3-TPD、HRTEM、XPS等手段对催化剂的理化性质进行了表征,发现合成得到的Ni/Si O2催化剂具有良好的织构性质、极高的金属分散度和活性比表面积,并且对甘油氢解生成1,2-丙二醇的反应表现出良好的活性和选择性.研究还考察了催化剂的镍硅比、反应停留时间、反应压力、甘油浓度对甘油氢解性能的影响,发现在镍硅比为0.5,反应停留时间为2 h,反应压力为5.5 MPa,甘油浓度为10%的条件下,甘油的单程转化率达78.8%,1,2-丙二醇的选择性高达92.9%.  相似文献   

13.
Single-crystalline nanobelts and nanorings of Na(2)V(6)O(16)·3H(2)O structures have been facilely synthesized through a direct hydrothermal reaction between NaVO(3) and H(3)PO(4), without the addition of any harmful solvents or surfactants. The analytical techniques of scanning electron microscopy, transmission electron microscopy (TEM), powder X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared, high-resolution TEM, and selected-area electron diffraction have been used to characterize the morphology, composition, and structure of the synthesized products. The Na(2)V(6)O(16)·3H(2)O nanobelts are up to several hundreds of micrometers in length and 100-300 nm in thickness, and for nanorings, the diameters are 4.5-6.5 μm. H(3)PO(4) plays a key role in maintaining the pH of the solution as well as producing PO(4)(3-) ions in solution. The chemical reactions and a possible growth mechanism involved in the formation of Na(2)V(6)O(16)·3H(2)O nanobelts and nanorings are briefly discussed.  相似文献   

14.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

15.
Composite microtubes of Mo(2)C/MoCO have been synthesized for the first time under well-controlled conditions by thermal decomposition of Mo(CO)(6) at about 600 degrees C. Here, thermal stability and phase transition of the products, as well as the influence of reaction temperature and argon flow rate, have been carefully investigated. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The reaction model and rolling mechanism were proposed on the basis of the experimental facts.  相似文献   

16.
Guo Z  Du F  Li G  Cui Z 《Inorganic chemistry》2006,45(10):4167-4169
Single-crystal cerium hydroxide carbonate (Ce(OH)CO3) triangular microplates with the hexagonal phase have been successfully synthesized by a hydrothermal method at 150 degrees C using cerium nitrate (Ce(NO3)3.6H2O) as the cerium source, aqueous carbamide as both an alkaline and carbon source, and cetyltrimethylammonium bromide (CTAB) as a surfactant. Single-crystal ceria (CeO2) triangular microplates have been fabricated by a thermal decomposition-oxidation process at 650 degrees C for 7 h using single-crystal Ce(OH)CO3 microplates as the precursor. The shape of the Ce(OH)CO3 microplate was sustained after thermal decomposition-oxidation to CeO2. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TG).  相似文献   

17.
王淼  石玉军  江国庆 《无机化学学报》2009,25(10):1785-1790
以Sm(NO3)3·6H2O和不同的氟化物(NaBF4,NH4F)在120℃的低温水热条件下反应得到了六边形及圆形的SmF3微米盘.通过X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)对产物的晶相和形貌进行了表征.XRD结果显示所得的产物是结晶良好的六方晶系.SEM和TEM测试表明得到大量均匀的厚度约为200 nm的盘状结构.研究发现氟化物种类以及反应时间对形成不同形貌的盘有重要影响.讨论了可能的形成机理.进一步研究了SmF3:Tb3+和SmF3:Eu3+掺杂后的产物的荧光性质.  相似文献   

18.
Monodispersed hollow ZnS microspheres have been successfully synthesized by a facile ethylenediamine tetraacetic acid (EDTA) mediated hydrothermal route. The sizes of the hollow spheres vary from 1.5 to 3.5 microm when the reaction temperature varied from 130 to 230 degrees C. The formation of these hollow spheres is attributed to the oriented aggregation of ZnS nanocrystals around the gas-liquid interface between H(2)S and water. EDTA plays important role as chelating ligand and capping reagent, which regulates the release of Zn(2+) ions for the formation of ZnS hollow spheres. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy, photoluminescence, and Raman spectroscopy. The obtained ZnS hollow spheres show a sharp and photostable UV emission approximately 370 nm, which is attributed to the recombination process associated with interstitial sulfur vacancy.  相似文献   

19.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

20.
采用硝酸锌、五氧化二钒和氢氧化钠作为反应物,通过一个简单的CTAB辅助的水热方法制备了Zn3(OH)2V2O7·2H2O纳米片.运用XRD,ICP-AES,FTIR,HRTEM,EDS,FE-SEM对产物的晶相和形貌进行了表征.结果表明CTAB在控制产物的形貌、尺寸分布和自组装过程中起着关键作用.同时我们研究了产物的晶体生长行为和自组装过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号