首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activation energy, and reducing activation energy is propitious to promoting a chemical reaction. In the present paper, the relationship between the activation energy in Si-KOH reaction system and the ultrasound frequency and power has been discussed for the first time. The range of ultrasound frequency and power is 40-100kHz (interval by 20kHz) and 10-50W (interval by 10W), respectively. The experimental clata indicate that the activation energy decreases with the increasing ultrasound power. Comparing with the activation energy without ultrasound irradiation, the results in our paper indicate that ultrasound irradiation could reduce the activation energy in Si-KOH reaction system and increase the reaction rate.  相似文献   

2.
High-dimensional, wave packet calculations have been carried out to model the surface temperature dependence of rovibrationally inelastic scattering and dissociation of hydrogen molecules from the Cu(111) surface. Both the molecule and the vibrating surface are treated fully quantum-mechanically. It is found, in agreement with experimental data, that the surface temperature dependence of a variety of dynamical processes has an Arrhenius form with an activation energy dependent on molecular translational energy and on the initial and final molecular states. The activation energy increases linearly with decreasing translational energy below the threshold energy. Above threshold the behavior is more complex. A quasianalytical model is proposed that faithfully reproduces the Arrhenius law and the translational energy dependence of the activation energy. In this model, it is essential to include quantized energy transfer between the surface and the molecule. It further predicts that for any process characterized by a large energy barrier and multiphonon excitation, the linear change in activation energy up to threshold has slope-1. This explains successfully the universal nature of the unit slope found experimentally for H2 and D2 dissociation on Cu.  相似文献   

3.
We have measured the dependence of the relative integral cross section of the reaction Li + HF → LiF + H on the collision energy (excitation function) using crossed molecular beams. By varying the intersection angle of the beams from 37° to 90° we covered the energy range 25 meV ≤ E(tr) ≤ 131 meV. We observe a monotonous rise of the excitation function with decreasing energy over the entire energy range indicating that a possible translational energy threshold to the reaction is significantly smaller than 25 meV. The steep rise is quantitatively recovered by a Langevin-type excitation function based on a vanishing threshold and a mean interaction potential energy ∝R(-2.5) where R is the distance between the reactants. To date all threshold energies deduced from ab initio potentials and zero-point vibrational energies are at variance with our results, however, our findings support recent quantum scattering calculations that predict significant product formation at collision energies far below these theoretical thresholds.  相似文献   

4.
A single nonisothermal dynamic curve can be relatively correctly described by several reaction models in model-fitting approach, which yields model-dependent kinetic parameters. The model dependence of the apparent activation energy is explained mathematically by a new method which is developed from the peak property method in this paper. It has been found that the apparent activation energy rises linearly with the increase of the order of nth-order and Avrami-Erofeev reaction models, which can be verified by data from the literature and can explain some phenomena appeared in some articles. Moreover, the apparent activation energies derived from fitting a single nonisothermal dynamic curve to nth-order and Avrami-Erofeev reaction models can be correlated through the activation energy of 1st-order model.  相似文献   

5.
氧化锆基固体电解质材料与温度无关的离子电导活化能   总被引:2,自引:0,他引:2  
氧化锆(ZrO2)基固体电解质材料的离子电导率随温度的变化关系呈现非线性Arrhenius特征;相应地,由经典的Arrhenius公式计算得到的电导活化能是一个与温度有关的参数.本文通过对实验获得的几种Y2O3稳定立方ZrO2(YSZ) 材料的电导率-温度关系的分析,对经典的Arrhenius公式进行了修正.由修正后的Arrhenius公式计算得到的电导活化能是一个与温度无关的常数.此外,还进一步借助于物理化学中的过渡状态理论,从材料离子导电机制出发对这一与温度无关的电导活化能的合理性进行了讨论,发现这一活化能在数值上与理论计算结果吻合得很好.  相似文献   

6.
D+CH4反应的SVRT含时波包理论研究   总被引:2,自引:0,他引:2  
基于Jordan和Gilbert势能面,用SVRT(semirigid vibrating rotor target)模型,对D+CH4反应进行了含时波包动力学研究,计算得到了不同初始振动转动态的总反应几率、积分散射截面和热速率常数.计算结果与H+CH4反应进行了比较和讨论.反应几率随平动能的变化曲线呈现出显著的量子共振特性.通过对j=0时,v=0、1、2的反应几率的计算,看出H-CH3的振动激发极大地提高了反应几率,而反应阈能明显降低,说明反应分子的振动能对分子的碰撞反应有重要贡献.对v=0时,j=0、1、2、3的反应几率的计算,得出转动量子数j的增大也会使反应几率有较大的提高,但反应阈能基本不变.  相似文献   

7.
基于Jordan和Gilbert势能面,用SVRT(semirigidvibratingrotortarget)模型,对D CH4反应进行了含时波包动力学研究,计算得到了不同初始振动转动态的总反应几率、积分散射截面和热速率常数.计算结果与H CH4反应进行了比较和讨论.反应几率随平动能的变化曲线呈现出显著的量子共振特性.通过对j=0时,v=0、1、2的反应几率的计算,看出H-CH3的振动激发极大地提高了反应几率,而反应阈能明显降低,说明反应分子的振动能对分子的碰撞反应有重要贡献.对v=0时,j=0、1、2、3的反应几率的计算,得出转动量子数j的增大也会使反应几率有较大的提高,但反应阈能基本不变.  相似文献   

8.
合成了5种含碘的电荷转移复合物,对其热化学烧孔性能进行了研究,在它们的单晶上成功写入了信息点阵.通过热重分析获得了5种材料的热分解温度,并测量了它们的烧孔阈值电压.结果表明,材料的热分解温度对烧孔阈值电压有明显影响.理论分析表明,阈值电压对热分解温度的依赖关系反映了活化能对热化学烧孔反应速度的影响.  相似文献   

9.
The authors report accurate quantum mechanical studies of the O+OH reaction on the improved Xu-Xie-Zhang-Lin-Guo potential energy surface. The differential cross section was obtained at several energies near the reaction threshold using a time-independent method. The dominant forward and backward peaks in the angular distribution are consistent with a complex-forming mechanism, which is also confirmed by the extensive rotational excitation in the O2 product. However, the asymmetry of these peaks suggests a significant nonstatistical component. The initial state (upsilon i=0, j i=0) specified integral cross section, which was calculated up to 1.15 eV of collision energy using the Chebyshev wave packet method, shows no energy threshold and decreases with the increasing collision energy, consistent with the barrierless nature of the reaction. The resulting rate constant exhibits a negative temperature dependence for T>100 K and decays as the temperature is lowered, in qualitative agreement with available experimental data.  相似文献   

10.
The dependence of disproportionation reaction kinetics of iodous acid, HOIO, in aqueous solutions of sulfuric acid on the solution acidity is examined. The rate constants of the disproportionation reaction are determined at temperatures of 18, 25 and 30 °C, based on kinetic data obtained under stationary conditions. The average value of the activation energy is determined to be 42 kJ/mol.  相似文献   

11.
Qibiao Li  Yajuan Hao 《大学化学》2020,35(9):205-208
In this paper, we discussed several problems on calculation of reaction rate constant in physical chemistry reference books. When calculating the rate constant k of the second-order reaction, we should make the half-life formula consistent with the reaction stoichiometric equation. And when calculating the activation energy with Arrhenius formula for ideal gas-phase reaction, attention should be paid to identifying the difference between the reaction rate constant kc and kp, as well as the difference between corresponding activation energy Eac and Eap. It is beneficial for students to have a correct understanding in calculation.  相似文献   

12.
Reactions of HOD(+) with CO(2) have been studied for HOD(+) in its ground state, and with one quantum of excitation in each of its vibrational modes: (001)--predominantly OH stretch, 0.396 eV; (010)--bend, 0.153 eV; and (100)--predominantly OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 3 eV. The cross sections for both H(+) and D(+) transfer rise with increasing collision energy from threshold to ~1 eV, then become weakly dependent of the collision energy. All three vibrational modes enhance the total reactivity, but quite mode specifically. The H(+) transfer reaction is enhanced by OH stretch excitation, whereas OD stretch excitation has little effect. Conversely, the D(+) transfer reaction is enhanced by OD stretch excitation, while the OH stretch has little effect. Excitation of the bend strongly enhances both channels. The effects of the stretch excitations are consistent with previous studies of neutral HOD mode-selective chemistry, and can be at least qualitatively understood in terms of a late barrier to product formation. The fact that bend excitation produces the largest overall enhancement is surprising, because this is the lowest energy excitation, and is not obviously connected with the reaction coordinates for either H(+) or D(+) transfer. A rationalization in terms of the effects of water distortion on the potential surface is proposed.  相似文献   

13.
粒度对多相反应动力学参数的影响   总被引:1,自引:0,他引:1  
以纳米氧化锌与硫酸氢钠溶液为反应体系, 研究反应物粒度对动力学参数的影响规律. 讨论了表观活化能降低的原因. 结果表明:当反应物粒径、反应温度和搅拌速率一定时, 纳米氧化锌与硫酸氢钠溶液的反应速率仅与反应物的浓度有关;反应物粒度对多相反应的反应级数、速率常数、表观活化能和指前因子均有较大的影响;随着反应物粒径的减小, 表观活化能和指前因子减小, 而反应级数和速率常数增大, 并且速率常数和表观活化能与反应物粒径的倒数呈线性关系;反应物粒度是通过摩尔表面积、摩尔表面能和摩尔表面熵三个方面影响多相反应的动力学参数的.  相似文献   

14.
TheoreticalStudiesontheMechanismofMannichReactionInvolvingIminiumSaltasPotentialMannichReagent(1)——UseAcetaldehydeasPseudo┐ac...  相似文献   

15.
Emission and excitation spectra of 3- and 4-pyridinecarboxaldehyde vapors have been measured at different pressures down to 10(-2)Torr. The phosphorescence quantum yield measured at low pressure as a function of excitation energy is nearly constant in the range of excitation energy corresponding to the S1(n, pi*) state, but it decreases abruptly at the S2(pi, pi*) threshold. The onset of the abrupt decrease of the yield corresponds to the location of the S2 absorption origin of each molecule, indicating that the nonradiative pathway depends on the type of the excited singlet state to which the molecule is initially excited. The relaxation processes are discussed based on the pressure and excitation-energy dependence of the phosphorescence quantum yield.  相似文献   

16.
多数被发掘的古代青铜文物表面都附着有某些钢锈,其中以粉状锈(Cu_2(OH)_3Cl)对铜器的腐蚀最为严重.迄今已有一些文献介绍粉状锈的生成机理,但对其反应过程的动力学研究尚未见报导。作为青铜合金中含量最丰的元素铜,被氧化腐蚀是分步进行的.本工作主要用X-光衍射及分光光度法对一价铜锈CuCl在潮湿环境中进行氧化反应的速度常数及表观活化能进行测定核算;对反应的中间产物及伴随现象进行分析探讨。  相似文献   

17.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

18.
合成了次联苯基型合硅聚酰亚胺(SIDA-BDA),研究了其均质膜对H2,O2和N2的透过分离性能与温度的关系,随着温度的升高,气体的透过系数和扩散系数增大,而溶解系数和选择系数则降低,此外,我们还讨论了气体在膜中的透过活化能,扩散活化能和吸着热。  相似文献   

19.
The excitation function of the89Y/d,2n/89Zr reaction was determined by the stacking foil technique below 13.5 MeV. The measured dependence has a threshold energy of Ethr=6.0 MeV. An estimation by the Keller, Lange and Münzel tables is in good agreement with the experiment.  相似文献   

20.
Pulsed 266 and 355 nm ultraviolet laser irradiation of monolayer vinyl chloride physisorbed on Ag(111) results in molecular dissociation leading to C2H3 and Cl, much of which is adsorbed to the surface. On the basis of observations made on dissociation dependences on chlorine isotope and photon energy, it is deduced that upon excitation vinyl chloride forms a transient negative ion through a substrate mediated, vertical electron attachment mechanism. The anion either dissociates or relaxes through energy transfer to the neutral state causing the neutral molecule to desorb. The threshold for vertical attachment of substrate electron is estimated to be 0.8 eV below the vacuum level, in agreement with the experimentally observed wavelength dependence in photoinduced dissociation. Chemisorbed Cl on the Ag(111) surface inhibits the photodissociation process by increasing the substrate work function and consequently the energy threshold for electron vertical attachment. Upon heating the Ag(111) surface, adsorbed vinyl combines to produce 1,3-butadiene in a first order, diffusion limited, process with an activation energy of 10.4 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号